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ABSTRACT

Many-core processors, due to their complexity and diversity, will necessitate high-productivity,
domain-specific approaches to parallel programming. These approaches should hide architec-
tural details and low-level parallel programming constructs while enabling scalability and per-
formance portability. This paper presents a scalable implementation of MapReduce, a runtime
system used widely by domain-specific languages for large-scale data processing, on the Intel
SCC. We address the scalability bottlenecks of MapReduce with data partitioning, combining
and sorting algorithms that we customize for the SCC network on-chip architecture. We achieve
linear or superlinear speedups for representative MapReduce workloads with data sets that fit on
a single SCC node.
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1 Introduction

MapReduce [DGO8] processes an input of (key, value) pairs to produce an output of (key,
value) pairs. A MapReduce program executes in three stages, a map stage that produces a
set of intermediate (key, value) pairs for each input pair, a group stage that groups all inter-
mediate (key, value) pairs associated with the same key, and a reduce stage that merges the
values associated with each key. The map and reduce stages are user-defined and application-
specific.

The Intel SCC [Heal0] is a many-core processor with 24 tiles and 2 IA cores per tile.
The tiles are organized in a 4x6 mesh network with 256 GB/s bisection bandwidth. The
processor has 4 integrated DDR3 memory controllers, one for each group of 6 tiles. Each
core has a private L1 instruction cache of 16 KB, a private L1 data cache of 16 KB and a
private unified L2 cache of 256 KB. Each dual-core tile has a 16 KB message passing buffer
(MPB), which is the only component of the SCC on-chip memory hierarchy that is shared
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between cores. On-chip communication data is read from the MPB through the L1 data
cache, bypassing the L2 cache. Software needs to maintain coherence between the MPB and
the L1 caches by using a, unique to the SCC, L1 cache invalidation instruction, when data
is stored in the MPB. The 32-bit address space of the system is mapped to an extended 34-
bit address space to allow access to up to 64 GB of off-chip memory (up to 16 GB from
each group of 6 tiles). This is accomplished through a Look-Up Table (LUT) attached on
each core. The address space of the system is configurable and can be distributed between
private off-chip memory associated with each core, shared off-chip memory, and shared on-
chip SRAM, which corresponds to data stored in the message buffers and cached in the L1.
We implement MapReduce using the the standard software environment of SCC compute
nodes available by Intel, namely a configuration running a Linux kernel on each core and
RCCE, the Intel one-sided communication library [Meal0].

This paper presents an implementation of the MapReduce programming model and run-
time system on the Intel Single-Chip Cloud Computer (SCC) [HealO]. We present a design
that utilizes effectively the SCC interconnection network and on-chip shared communica-
tion buffers to alleviate the two fundamental scalability bottlenecks of MapReduce, namely
data partitioning and data sorting. Our end result is a a fast and scalable implementation
of MapReduce, based on customized on-chip data exchange, combining, and sorting algo-
rithms.

2 MapReduce Design

We implement a seven-stage runtime system for MapReduce. The seven stages are map,
combine, partition, grouping, reduce, sort and merge. The combine and merge stages are optional
in typical MapReduce setups, whereas the grouping stage replaces an intermediate sorting
stage of MapReduce to reduce computational complexity.

During the Map stage, the runtime system divides the input evenly to as many parts as
the number of cores. Each core then executes the user-defined map function over its private
input data. This function takes as input a key-value pair and produces one or more interme-
diate key-value pairs. Each core exports as many intermediate data partitions, as the number
of cores in the system. To split intermediate data between different partitions, we use a user-
defined hash function or a generic hash function available in the MapReduce runtime in
case the user does not specify a hash function. The hash function takes a key as argument
and returns the ID of a partition to store the generated intermediate key-value pair.

Combine stage is optional and executes if the user provides a combiner function. The
purpose of this stage is to reduce locally the size of each partition produced by a given
core during the Map stage. The combine function takes as input a key and a list of partially
aggregated intermediate values associated with the same key. It produces as output a single
key-value pair where the value is an updated partial aggregation of the values associated
with the key.

The partitioning stage requires an all-to-all exchange between cores. Data partitions gen-
erated during the map stage may be different in size. We implement a custom all-to-all
exchange algorithm for the SCC to achieve scalable data partitioning. The algorithm first
executes an all-to-all exchange of the intermediate partition’s sizes, followed by an all-to-all
exchange of the intermediate data. We implement the all-to-all exchange using pairwise ex-
changes. Let p be the number of available cores and rank the core ID. This algorithm uses
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Figure 1: Speedup and breakdown for Histogram (left) and WordCount (right).

p — 1 steps and in each step k the rank core receives data from core rank — k and sends
data to core rank + k. We opted to use the RCCE_{send, recv} functions to implement this all-
to-all exchange. RCCE is an SCC communication runtime environment based on one-sided
get-put communication primitives [Meal0].

The grouping stage groups together all key-value pairs with the same key, taken across
all intermediate data partitions. In previous works, a generic sorting scheme with a user-
defined comparator was used to perform grouping. We replace this scheme with a radix sort-
ing algorithm [MBMO93] for grouping on the SCC. The quicksort algorithm employed in prior
MapReduce implementations on multi-core systems has complexity O(nlogn), whereas radix
sort has complexity O(kn) where k is the size of the key in bytes. Radix sort outperforms
quicksort with the caveat that radix sort sorts strings of bytes and can not use a user-defined
comparator for sorting. This caveat implies that in applications where the key data type is
not a string, radix sort may produce unsorted sequences that need to be processed further
in the following stages of MapReduce.

The reduction stage executes a user-defined key aggregation function. The prior group-
ing stage exports an array of all distinct keys where each key contains a number of occur-
rences of this key and a pointer to an array of its values. The output size of the reduction
stage can be statically identified, therefore we preallocate the stage’s output buffers.

The sorting stage sorts the key-value pairs produced following the reduction, using
quicksort and a user-specified comparison operator.

The merge stage optionally merges the output of all cores in one core. We use the bino-
mial merge algorithm for this stage [TR05], which completes in logn steps.

3 Evaluation

We use Histogram and Word Count applications to evaluate MapReduce. Histogram counts
the frequency of occurrences of each RGB color component in an image file. Word Count
counts the number of occurrences of each word in a text file.

Figure[I|illustrates speedup of application workloads, with and without a combiner func-
tion. Speedup is calculated using execution time on 4 cores (2 tiles) as the nominator, there-
fore ideal linear speedup is 16 for the entire SCC chip. Figure [I|show breakdowns of ex-
ecution time. All applications scale well. With the use of a combiner function, applications
have nearly ideal linear or in some cases, superlinear speedup. The reason for superlinear
speedup is that the complexity of the Grouping decreases exponentially with the number
of cores. Therefore, the Grouping stage has superlinear speedup and in applications where



the grouping stage dominates execution time, the overall application speedup may also be
superlinear. We analyze briefly individual applications in the following.

Histogram does not achieve perfect speedup without a combiner, because the Partition
stage does not scale. Reducing the intermediate data size with a combiner alleviates the
bottleneck. Histogram exports a maximum of only 3 x 255 different keys, which makes Merge
time insignificant.

Word Count incurs load imbalance in the Grouping stage. This leads to erratic speedup.
However, the problem is easily alleviated with a combiner function that rebalances the vol-
ume of intermediate data between cores.

4 Conclusions

This paper presented a scalable implementation of Google’s MapReduce runtime system on
the Intel SCC. The implementation attests to the scalability of the chip, as well as its ability
to support high-level parallel programming models while hiding explicit communication
from programmers. Our implementation of MapReduce leveraged one-sided on-chip com-
munication primitives and customized data combining algorithms to alleviate bottlenecks
that arise during data partitioning and sorting.
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