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ABSTRACT

In this paper we present a new filesystem for storing virtual machine images. In the current filesys-
tem design all I/O calls pass through a singe path inside the Linux kernel, resulting in contention
on shared resources and interference along independant virtual machine images. We propose a
partitioned I/O path through Linux kernel to minimize the contention and inteference. This par-
titioned scheme contains a filesystem and an allocator. The other parts are a partitioned DRAM
cache and partition journal meachanism which are beyond the scope of this work.
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1 Introduction

Filesystems have been examined for a lot of years in many aspects. Recent technology evo-
lution of multicore servers and SDD drives gives new opportunities for more optimization
in filesystems. In [KMB] the authors show that current filesystem design does not scale.
In this work we present an application specific filesytem targeting virtual machine images.
The resources of modern servers are capable of managing large number of virtual machines.
Although there has been a lot of work in virtual machine managers like KVM, Xen and
VMWare, there is still space for optimization in the filesystem, which is responsible for stor-
ing the virtual machine images. Keeping this in mind we can make several assumptions for
this type of files. VM images are generally large in size with limited need for resizing. Each
virtual machine image is independant from the others. Using these assumptions we can pro-
vide several optimizations in the design of I/O path. Because of the fact that virtual machine
images are generaly large and resizing is very rare we can apply several optimizations for
more effiecient read /write path. Also the block allocator can be less sophisticated thus re-
sulting in less overheads during block allocation and deallocation. Another very important
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part of managing virtual machine images is the need of isolation. VM images have to share
a single I/O path with the current linux configuration, which results in significant perfor-
mance penalty [KMHKI12]. There are currently Linux mechanisms like cgroups to provide
isolation but this is not proven to work effieciently.

In this work we present the design and the implementation of a filesystem and an alloca-
tor for managing virtual machine images. We refer to these partitions as I/O slices. Our new
I/O path consists of a filesystem which is responsible for namespace managment and a low
overhead allocator. The filesystem is responsibe for dispatching each I/O call to the correct
I/0O slice. We also provide a partitioned DRAM cache and partitioned journal mechanism to
support reliability. The last of them are beyond the scope of this work.

The rest of this paper is organized as follows: Section [2 provides the background of the
current I/O path and filesystem design. In Section 3l we show the design of a partitioned
block allocator, while in Section [d] we describe the design of the partitioned filesystem.

2 Background
A typical filesystem implements the following functionality:

1. Namespace management: provides a mapping between a filename and the content of
the file. Hierarchical directories are also provided to group files. Namespace manage-
ment requires extensive use of metadata. The most important elements of filesystem
metadata are:

e inodes are the low level representation of a file. They contain a unique numeri-
cal identifier, pointers to allocated blocks, disk usage of the file, file length, file
permissions, and timestamps (creation/last-access/last-modification).

e dentries contain a binding between a filename and the directory that this file be-
longs.

o The superblock contains general information about the filesystem such as: filesys-
tem block size, address of root inode, how many files have been created in the
file system etc.

2. Reliability: Filesystems provide a mechanism to keep a consistent state of the machine
even in presence of power failures or system crashes.

3. Block Allocation: Filesystem operations may have to allocate or free blocks, so there
is a need to keep track of unused blocks on the block storage device underlying the
tilesystem, which requires additional metadata.

4. DRAM caching: Storage devices throughput is orders of magnitude slower than the
CPU, making it imperative to rely on caching recently accessed blocks in non-persistent
DRAM to increase filesystem performance.
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Figure 1: Allocator disk layout.

3 Allocator Design

The allocator is responsible for allocation and deallocation of disk blocks. Figure (1| shows
the layout of our allocator on disk. First of all comes the filesystem superblock, then the
allocator superblock and at last the root directory inode. Each has size equal to 4KB. The
root directory inode is allocated in partition 0. We split each partition in smaller parts called
containers. There are 20 different types of containers. In each container type we store objects
of the same size. The available container types support different object sizes and begin with
object size equal to 4Kb (type0) and end with object size equal to 2Gb (typel9). The size of
remaining types is:
sizeof(typeX) = sizeof (type(X — 1)) * 2

For example container with type 0 allocates only 4Kb blocks and container with type 19
stores 2Gb blocks. Each container has a fixed size depending of it’s type and the number
of available objects is equal to the container_size/object_size. For each container we keep
4Kb of metadata containing the bitmap for allocated blocks and other information needed.
We assign to each container type a seperate free-list. When an allocation is performed we
tirstly search the corresponding free-list and if there is no block available we have to allocate
a new container. In the case of the free-list is not empty we simply get the block from it. For
the deallocation process we simply add the deallocated block in the corresponding free-list.
In both cases we have to update the on-disk bitmap to ensure persistanse. We also have
seperate locks for each partition and container type to minimize contention. This allocator
design achieves low overhead allocation and deallocation of fixed size blocks from 4Kb to
2Gb. The filesystem has to manage these type of blocks to create arbitary size files.

4 Filesystem Design

pFS is designed to implement the minimum required functionality for a filesystem to be
functional. We implement only the namespace management in the filesystem layer, and pro-
vide the remaining functionality below the filesystem layer. Block allocation is handled via
calls to a dedicated allocator module described in Section |3, Caching and journaling are
addressed by distinct modules which are beyond of this work.



PFS has to translate file operations to block operations. The resulting block operations
are issued to the next layer (DRAM cache) taking into account the partitioned cache design.
To achieve the translation from file operations to block operations, each inode contains an
arrays of pointers to disk blocks. Each of these are used for a fixed block size. This block
managment allows the creation for files with maximum size equals to 231Gb.
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