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Abstract
Many-core processors, due to their com-
plexity and diversity, will necessitate high-
productivity, domain-specific approaches to
parallel programming. These approaches
should hide architectural details and low-level
parallel programming constructs while en-
abling scalability. We implement MapReduce
on Intel SCC. MapReduce is a large scale data
processing framework and SCC is a 48 core re-
search processor.

Background - Intel SCC
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Intel SCC is a many-core processor with 24 tiles
and 2 IA cores per tile. Tiles organized in a 4×6
mesh network with 256 GB/s bisection band-
width. Each core has a private L1 instruction
cache of 16 KB, a private L1 data cache of 16 KB
and a private unified L2 cache of 256 KB. Also
each tile conatins 16 KB message passing buffer
(MPB) (only on-chip memory shared between
cores).

Background - MapReduce
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MapReduce is a framework for large-data scale
processing, based on functional programming
language primitives. Runtime has to deal
with fault-tolerance, parallelization, schedul-
ing, synchronization and communication.
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Design
We implement a seven-stage runtime system for
MapReduce. The seven stages are map, com-
bine, partition, group, reduce, sort and merge. The
combine and merge stages are optional in typical
MapReduce applications. Our constribution is
the partition and group stages that is optimized
for SCC architecture.
The partitioning stage requires an all-to-all ex-
change between cores. Data partitions generated
during the map stage may be different in size.
We implement a custom all-to-all exchange algo-
rithm for the SCC to achieve scalable data par-
titioning. The algorithm first executes an all-to-
all exchange of the intermediate partition’s sizes,
followed by an all-to-all exchange of the interme-
diate data. We implement the all-to-all exchange

using pairwise exchanges. Let p be the number
of available cores and rank the core ID. This al-
gorithm uses p − 1 steps and in each step k the
rank core receives data from core rank − k and
sends data to core rank + k.
The group stage groups together all key-value
pairs with the same key, taken across all inter-
mediate data partitions. In previous works, a
generic sorting scheme with a user-defined com-
parator was used to perform grouping. We
replace this scheme with a radix sorting algo-
rithm for grouping on the SCC. The quicksort
algorithm employed in prior MapReduce imple-
mentations on multi-core systems has complex-
ity O(nlogn), whereas radix sort has complexity
O(kn) where k is the size of the key in bytes.

Results
We use Histogram and Word Count applications to evaluate MapReduce. Histogram counts the
frequency of occurrences of each RGB color component in an image file. Word Count counts the
number of occurrences of each word in a text file.
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Combiner stage reduces the intermediate buffers size. This results in improving the scalability. Su-
perlinear speedup because complexity of the group stage decreases exponentially with the number
of cores.
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Partition stage does not scale. Combiner minimizes total partition time and group time.References
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