
MapReduce for the Single-Chip-Cloud Architecture
Anastasios Papagiannis and Dimitrios S. Nikolopoulos
{apapag, dsn}@ics.forth.gr

Abstract
Many-core processors, due to their com-
plexity and diversity, will necessitate high-
productivity, domain-specific approaches to
parallel programming. These approaches
should hide architectural details and low-level
parallel programming constructs while en-
abling scalability. We implement MapReduce
on Intel SCC. MapReduce is a large scale data
processing framework and SCC is a 48 core re-
search processor.

Background - Intel SCC

Tile

Tile Tile

Tile

Tile Tile

Tile

Tile Tile

Tile Tile

R R

R

R R

R R

System Interface

Tile Tile

Tile Tile

Tile Tile

Tile

Tile

Tile

Tile Tile

Tile Tile

R

R

R

R

R R

RR

R R R R

R R R

R

R

VRC

D
D

R
M

C

D
D

R
M

C
D

D
R

M
C

D
D

R
M

C

P54C
(16KB
each L1)

P54C
(16KB
each L1)

CC

CC

256KB

 L2

256KB

 L2

MIU

Message
 Passing
 Bu�er

Tra�c
Gen

Tile

P54C FSB To
Router

Intel SCC is a many-core processor with 24 tiles
and 2 IA cores per tile. Tiles organized in a 4×6
mesh network with 256 GB/s bisection band-
width. Each core has a private L1 instruction
cache of 16 KB, a private L1 data cache of 16 KB
and a private unified L2 cache of 256 KB. Also
each tile conatins 16 KB message passing buffer
(MPB) (only on-chip memory shared between
cores).

Background - MapReduce
Sally sells sea shells by the sea shore

sally,1| sells, 1 sea, 1 shells, 1 by, 1| the, 1 sea, 1 shore, 1

Map

Group By Key

Reduce

by, 1 sally, 1 sea, 1:1 sells, 1 the, 1 shore, 1

by, 1 sally, 1 sea, 2 sells, 1 the, 1 shore, 1

MapReduce is a framework for large-data scale
processing, based on functional programming
language primitives. Runtime has to deal
with fault-tolerance, parallelization, schedul-
ing, synchronization and communication.

Funding
The research leading to these results has received funding from the European Community’s Seventh Framework. Pro-
gramme [FP7/2007-2013] under the I-CORES project, grant agreement no 224759.

Design
We implement a seven-stage runtime system for
MapReduce. The seven stages are map, com-
bine, partition, group, reduce, sort and merge. The
combine and merge stages are optional in typical
MapReduce applications. Our constribution is
the partition and group stages that is optimized
for SCC architecture.
The partitioning stage requires an all-to-all ex-
change between cores. Data partitions generated
during the map stage may be different in size.
We implement a custom all-to-all exchange algo-
rithm for the SCC to achieve scalable data par-
titioning. The algorithm first executes an all-to-
all exchange of the intermediate partition’s sizes,
followed by an all-to-all exchange of the interme-
diate data. We implement the all-to-all exchange

using pairwise exchanges. Let p be the number
of available cores and rank the core ID. This al-
gorithm uses p − 1 steps and in each step k the
rank core receives data from core rank − k and
sends data to core rank + k.
The group stage groups together all key-value
pairs with the same key, taken across all inter-
mediate data partitions. In previous works, a
generic sorting scheme with a user-defined com-
parator was used to perform grouping. We
replace this scheme with a radix sorting algo-
rithm for grouping on the SCC. The quicksort
algorithm employed in prior MapReduce imple-
mentations on multi-core systems has complex-
ity O(nlogn), whereas radix sort has complexity
O(kn) where k is the size of the key in bytes.

Results
We use Histogram and Word Count applications to evaluate MapReduce. Histogram counts the
frequency of occurrences of each RGB color component in an image file. Word Count counts the
number of occurrences of each word in a text file.

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

Histogram Speedup

Histogram w Combiner
Histogram w/o Combiner
ideal

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

WordCount Speedup

WordCount w Combiner
WordCount w/o Combiner
ideal

Combiner stage reduces the intermediate buffers size. This results in improving the scalability. Su-
perlinear speedup because complexity of the group stage decreases exponentially with the number
of cores.

0.0

0.5

1.0

S
ec

on
ds

Merge
Sort
Reduce
Group
Partition
Combine
Map

Histogram
0

2

4

6

8

S
ec

on
ds

Merge
Sort
Reduce
Group
Partition
Combine
Map

WordCount

Partition stage does not scale. Combiner minimizes total partition time and group time.References
[1] Dean, Jeffrey and Ghemawat, Sanjay. MapReduce:

Simplified Data Processing on Large Clusters In Com-
mun. ACM 2008

[2] Mattson, Timothy G. and et al. The 48-core SCC Proces-
sor: the Programmer’s View In Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis

