
Implementing Scalable Parallel
Programming Models with Hybrid

Address Spaces

Anastasios Papagiannis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Knossou Av., P.O. Box 2208, Heraklion, GR-71409, Greece

Thesis Advisor: Prof. Manolis Katevenis

This work has been performed at the Institute of Computer Science (ICS) Foun-
dation for Research and Technology – Hellas (FORTH), Heraklion, Crete,
GREECE.

The work is partially supported by the European Community’s Seventh Frame-
work Programme [FP7/2007-2013], I-CORES project under contract number no

224759.

University of Crete
Computer Science Department

Implementing Scalable Parallel Programming Models
with Hybrid Address Spaces

Thesis submitted by
Anastasios Papagiannis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Anastasios Papagiannis

Committee approvals:
Manolis Katevenis
Professor Thesis Supervisor

Dimitrios S. Nikolopoulos
Professor Committee Member

Angelos Bilas
Professor Committee Member

Departmental approval:
Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, February 2013

Abstract

This thesis introduces hybrid address spaces as a design methodology
for implementing scalable runtime systems on many-core architectures with-
out hardware support for cache coherence. We demonstrate hybrid address
spaces in an implementation of MapReduce, a well-established programming
model for large-scale, fault-tolerant data processing. Using the Intel Single-
Chip Cloud Computer as an experimental testbed, we present HyMR, a
staged MapReduce runtime system whereby different stages alternate be-
tween a distributed memory address space and a shared memory address
space to improve performance and scalability. In exploring hybrid address
spaces, we introduce four improvements in the implementation of MapRe-
duce: (1) Lock-free data distribution algorithms, using user-defined splitter
functions. (2) A scalable, interrupt-less implementation of work-stealing for
non-coherent architectures using exclusively on-chip communication to min-
imize latency. (3) Optimized implementation for on-chip barrier algorithms
for non-coherent many-core processors. (4) A new mechanism to enable fast
access from a core to the private memory of another core on-chip, which
accelerates global exchange operations.

We compare HyMR to an optimized reference implementation using ex-
clusively distributed address spaces and find that hybrid address spaces im-
prove performance by a factor of 1.71× (geometric mean). We also com-
pare HyMR with Phoenix++, a state-of-art implementation for systems with
hardware-managed cache coherence in terms of scalability and sustained to
peak data processing bandwidth, where HyMR demonstrates improvements
of a factor of 3.1× and 3.2× (geometric mean) respectively.

Περίληψη

Η εργασία αυτή εισάγει τους υβριδικούς χώρους διευθύνσεων ως τεχνική

για την υλοποίηση κλιμακώσιμων συστημάτων χρόνου εκτέλεσης σε πολυπύρι-

νες αρχιτεκτονικές χωρίς την υποστήριξη υλικού για την συνοχή των κρυφών

μνημών. Παρουσιάζουμε τους υβριδικούς χώρους διευθύνσεων για την υλο-

ποίηση του MapReduce, ενός καθιερωμένου μοντέλου προγραμματισμού για
μεγάλης κλίμακας, με ανοχή σε σφάλματα, επεξεργασία δεδομένων. Χρησιμο-

ποιώντας τον επεξεργαστή Intel Single-Chip-Cloud ως πειραματική πλατφόρμα
δοκιμών παρουσιάζουμε το HyMR, ένα σύστημα χρόνου εκτέλεσηςMapRecuce
για το οποίο διαφορετικά στάδια εκτέλεσης εναλλάσονται μεταξύ κατανεμημένης

μνήμης χώρου διευθύνσεων και κοινόχρηστης μνήμης χώρου διευθύνσεων για

την βελτίωση της επίδοσης και της κλιμακωσιμότητας. Στην εξερεύνηση των

υβριδικών χώρων διευθύνσεων εισάγουμε τέσσερις βελτιώσεις στην υλοποίηση

του MapReduce: (1) Παράλληλους αλγόριθμους, χωρίς την χρήση συγχρο-
νισμού (lock-free), για τον διαμοιρασμό δεδομένων, χρησιμοποιώντας συναρ-
τήσεις που ορίζονται από τον χρήστη. (2) Μια κλιμακώσιμη, χωρίς διακοπές

(interrupts), υλοποίηση του αλγορίθμου έργου-κλοπή (work-stealing) για αρ-
χιτεκτονικές χωρίς την υποστήριξη υλικού για την συνοχή των κρυφών μνη-

μών, χρησιμοποιώντας μόνο μνήμη που βρίσκεται μέσα στον επεξεργαστή για

την ελαχιστοποίηση της αδράνειας (latency). (3) Βελτιστοποιημένη υλοποίηση
αλγορίθμων φραγμάτων (barriers) χρησιμοποιώντας μνήμη που βρίσκεται μέσα
στον επεξεργαστή για πολυπύρινες αρχιτεκτονικές χωρίς την υποστήριξη υλικο-

ύ για την συνοχή των κρυφών μνημών. (4) ΄Ενα νέο μηχανισμό που επιτρέπει

την γρήγορη πρόσβαση από έναν πυρήνα στην τοπική μνήμη κάποιου άλλου

πυρήνα, το οποίο επιταγχύνει την καθολική ανταλαγή δεδομένων.

Συγκρίνουμε το HyMR με μία βελτιστοποιημένη υλοποίηση αναφοράς η ο-
ποία χρησιμοποιεί μόνο κατανεμημένους χώρους διευθύνσεων και βρίσκουμε ότι

οι υβριδικοί χώροι διευθύνσεων βελτιώνουν την επίδοση κατά 1.71× (γεωμετρι-
κός μέσος). Επίσης συγκρίνουμε το HyMR με το Phoenix++, την καλύτερη
υλοποίηση για συστήματα με υποστήριξη υλικού για την συνοχή των κρυφών

μνημών, σε όρους κλιμακωσιμότητας και αποδοτικότητας σε σύγκριση με τον

μέγιστο ρυθμό επεξεργασίας δεδομένων, όπου το HyMR αποδεικνύει βελτι-
ώσεις κατά 3.1× και 3.2× (γεωμετρικός μέσος) αντίστοιχα.

Acknowledgements

There are so many people that I would like to thank, each one helped me
with their own special way. First of all, I would like to thank my advisor Pro-
fessor Dimitrios S. Nikolopoulos. He has been a tireless source of inspiration,
encouragement and ideas during my undergraduate and graduate studies. He
introduced me in computer architecture and systems research. For all that
and much more, I am grateful.

I would also like to thank Professor Manolis Katevenis and Professor
Angelos Bilas for contributing as members of my Masters committee. I would
like also to thank them for the background, I gain during my undergradute
and graduate studies from courses and several discussions. They are always
willing to help me about my studies.

I need to express my gratitude to the University of Crete and the De-
partment of Computer Science for providing me with proper education; as
well as the Institute of Computer Science of the Foundation for Research and
Technology (ICS-FORTH) for supporting me.

Moreover I would like to give my appreciation to my friends, Vassilis
Papakonstantinou and Antonis Papaioannou for the encouragement and the
support during my undergraduate and graduate studies.

Last but not least I am grateful to my father Eleftherios, my mother Eleni
as well as my sister Anna–Maria for the encouragement and the support in
every single aspect of my life.

Herakleion–Crete, Anastasios Papagiannis
February 2013

Contents

1 Introduction 3

2 Background 7

2.1 Intel Single-Chip-Cloud-Computer (SCC) 8

2.1.1 SCC Address Spaces 9

2.1.2 SCC System Software 11

2.2 The MapReduce Programming Model 13

2.2.1 Programming Model 13

2.2.2 MapReduce Runtime Systems 14

3 DiMR Design and Implementation 17

4 HyMR Design and Implementation 23

4.1 HyMR Stages . 23

4.1.1 Scalable Custom Splitters 25

4.1.2 Map . 26

4.1.3 Partition . 28

4.1.4 Reduce . 29

4.1.5 Sort . 29

4.2 MapReduce Optimizations . 31

4.2.1 Optimizing On-Chip Barriers 31

I

4.2.2 Interrupt-less Work-Stealing 33

5 Experimental Analysis 35

5.1 Message-Passing vs. Hybrid-Adress-Spaces 38

5.2 Scalability . 39

5.3 Sustained to Peak Bandwidth 41

6 Related Work 45

7 Conclusions 47

II

List of Figures

2.1 SCC processor diagram. 8

2.2 Defauly mappings of LUT entries at runtime. 10

2.3 Message flow using off-chip DRAM and on-chip MPB. 12

2.4 Typical MapReduce workflow. 16

3.1 The flow of MapReduce Runtime using Message Passing. . . . 18

3.2 Libc qsort vs. radix sort, for a variable number of word-size

elements . 20

4.1 The flow of MapReduce Runtime using Hybrid Address Spaces. 24

4.2 The algorithm to avoid memory contention in Rearrange stage. 27

4.3 Speedup of PSRS implementation over sequential libc qsort. . 30

4.4 Comparison of barrier algorithms in SCC. 32

5.1 DiMR (left bar) vs. HyMR (right bar) performance 37

5.2 Speedup of benchmarks on the SCC (using HyMR) and AMD

(using Phoenix++) systems. 41

5.3 Comparison between HyMR (SCC) and Phoenix++ (AMD)

bandwidth utilization. 42

5.4 Bandwidth efficiency for our benchmarks. 43

III

IV

List of Tables

5.1 MapReduce application workloads 35

5.2 Speedup for partition and merge stages computed using DiMR

execution time over HyMR execution time using 48 cores. . . . 38

1

2

Chapter 1

Introduction

Many-core processors use diverging memory architectures. Some processors

use a memory hierarchy with local multi-level caches per core and a hard-

ware protocol to keep those caches coherent [1]. This memory architec-

ture resembles earlier shared-memory multi-processors from a programmer’s

standpoint. However, some processors use memory hierarchies without a co-

herence protocol. On the other hand, Graphics Processing Units (GPUs) [2],

the Intel SCC [3] and the Cell processor [4] are representative examples of

non-coherent architectures. Programming a non-coherent architecture re-

quires explicit communication between local address spaces, through message

passing or Direct Memory Access (DMA). Explicit communication increases

the programmer’s burden, as it requires a high level of expertise in parallel

programming and architectures to master. Runtime systems ease this burden

to a certain extent by implementing high-level communication primitives and

packaging them in user-level libraries (e.g MPI). Alternatively, non-coherent

architectures can be programmed with a shared address space model. In this

case, the runtime system implements a virtual shared memory abstraction.

In all cases, the runtime system is a critical component that largely defines

3

4 CHAPTER 1. INTRODUCTION

performance and programmability.

Runtime systems for non-coherent architectures are currently implemented

on top of distributed address spaces, typically using one address space per

core. The runtime system itself implements all necessary inter-core com-

munication operations for scheduling and synchronization, as well as all

application-level communication through explicit message passing or DMAs.

These operations flow either exclusively between local memories or between

local memories and DRAM. This implementation paradigm has been used

on the Cell processor, for implementing shared-memory programming models

such as OpenMP [5], COMIC [6] Sequoia [7], and CellSs [8] and the Intel SCC

for the implementation of X10 [9] and Shared Virtual Memory models [10].

Intuitively, using explicit communication in the runtime system yields a scal-

able implementation. In particular, explicit communication leverages on-chip

data transfer paths and a scalable NoC interconnect for passing data between

cores without paying the cost of off-chip memory accesses. This approach

works particularly well for exchanges of messages that fit in on-chip local

memories. However, this approach is not necessarily optimal in other cases.

Applications often need to transfer large amounts of data between processes

or threads in a program with littler or no processing on the data itself. If these

streaming data transfers flow through the on-chip memory hierarchy, they

will incur cache pollution, without offering an opportunity for data reuse.

Such operations should be best left uncached to maximize performance. A

shared, global address space model suits these operations best.

This thesis introduces hybrid address spaces as a fundamental design and

implementation methodology for scalable runtime systems. The intuition

behind our proposition is that a runtime system uses on-chip communica-

tion paths for small data transfers, such as those needed to exchange control

5

data for scheduling, and off-chip communication paths for large, streaming

data transfers. To verify this intuition, we present HyMR, an implemen-

tation of the MapReduce programming model [11] on the Intel Single-Chip

Cloud Computer [3]. The MapReduce runtime implements a staged execu-

tion model. We show that while certain stages are best implemented with

message passing over a distributed address space, other stages are best im-

plemented with in-place memory copying in a single, global address space. In

demonstrating the concept of hybrid address spaces in runtime systems, we

make several more contributions towards improving performance and scala-

bility of MapReduce on non-coherent many-core architectures. These contri-

butions include:

• Scalable, application-specific data splitters.

• A scalable, interrupt-less implementation of work-stealing on non-coherent

architectures using exclusively on-chip communication to minimize la-

tency.

• A new exploration of on-chip barrier algorithms for non-coherent many-

core processors.

• A new mechanism to enables fast access from a core to the private

memory of another core, which enables fast implementations of global

exchange operations.

Our implementation of HyMR provides design guidelines for latency and

throughput critical runtime system operations that are common to many,

if not all, programming models. These include scheduling and load balanc-

ing, data distribution, and various point-to-point and group communication

operations.

6 CHAPTER 1. INTRODUCTION

We compare HyMR to a reference runtime system implemented using

exclusively message passing. HyMR outperforms the baseline in all tests.

We also compare HyMR with Phoenix++, a state-of-art MapReduce im-

plementation for hardware-managed cache-coherence systems [12]. HyMR

achieves, on average, 3.1× improvement in speedup and 3.2× improvement

of bandwidth efficiency, on the same number of cores.

The rest of this thesis is organized as follows: Section 2 provides back-

ground on MapReduce and the Intel SCC processor. Section 3 presents

the design and implementation of DiMR, a reference implementation of the

MapReduce runtime for SCC processor, which uses exclusively distributed

address spaces. Section 4 presents the design and implementation of HyMR.

Section 5 presents our experimental analysis and results. Section 6 discusses

related work and Section 7 concludes the thesis.

Chapter 2

Background

Hardware support for cache coherence on a processor with many cores in-

creases complexity and power [13]. Although many efforts attempt to ad-

dress the scaling and power limitations of cache coherence on systems with

many cores [1], several vendors of many-core processors opt for a non-cache-

coherent architecture. On such an architecture, a programmer writes paral-

lel code using either explicit communication mechanisms or a shared virtual

memory layer implemented in software. In this section we provide back-

ground on non-cache-coherent many-core processors and programming mod-

els providing a shared memory abstraction on such processors. We discuss

in more detail the architecture of the Intel Single Chip Cloud Computer

(SCC), a processor prototyped to explore the performance, programmability

and power-efficiency of non-coherent architectures. We use the SCC as an

implementation vehicle for implementing scalable runtime systems with hy-

brid address spaces. We then provide background on MapReduce, a parallel

programming model for large-scale data processing, inspired by functional

languages.

7

8 CHAPTER 2. BACKGROUND

Tile

Tile Tile

Tile

Tile Tile

Tile

Tile Tile

Tile Tile

R R

R

R R

R R

System Interface

Tile Tile

Tile Tile

Tile Tile

Tile

Tile

Tile

Tile Tile

Tile Tile

R

R

R

R

R R

RR

R R R R

R R R

R

R

VRC

D
D

R
 M

C

D
D

R
 M

C
D

D
R

 M
C

D
D

R
 M

C

P54C

(16KB

each L1)

P54C

(16KB

each L1)

CC

CC

256KB

 L2

256KB

 L2

MIU

Message

 Passing

 Buffer

Traffic

Gen

Tile

P54C FSB To

Router

Figure 2.1: SCC processor diagram.

2.1 Intel Single-Chip-Cloud-Computer (SCC)

The Intel SCC1 [14] (Figure 2.1) is a many-core processor with 24 tiles and

two IA cores per tile. The tiles are organized in a 4×6 mesh network with

256 GB/s bisection bandwidth. The processor has four integrated DDR3

memory controllers, one for each group of six tiles. Each core has a private

L1 instruction cache of 16 KB, a private L1 data cache of 16 KB and a pri-

1The SCC is not a stand-alone computer thus to get it running, a management PC
(MCPC) needs to be used. The SCC connects to the MCPC through external PCIe.

2.1. INTEL SINGLE-CHIP-CLOUD-COMPUTER (SCC) 9

vate unified L2 cache of 256 KB. Each dual-core tile has a 16 KB message

passing buffer (MPB). The MPB is the only component of the SCC on-chip

memory hierarchy that is shared between cores. The SCC does not imple-

ment any cache-coherence mechanism between MPB and caches. The MPB

provides space for direct core-to-core communication. Data used in on-chip

communication is read from the MPB, bypassing the L2 cache. For writes, a

no-allocate policy is used, in conjunction with a write combining buffer in the

L1 cache. Software needs to maintain coherence between the MPB and the

L1 caches by using an L1 cache invalidation instruction (CL1INVMB), when

data is stored in the MPB. According to the processor specifications [15], the

latency to read a cache line from MPB buffers and off-chip DRAM are:

Local MPB = 45Cc + 8Cm (2.1)

Remote MPB = 45Cc + 4 · n · 2Cm (2.2)

DRAM = 40Cc + 4 · n · 2Cm + 46Cr (2.3)

where Cc, Cm and Cr denote the clock cycles of the core, the mesh network

and the DRAM respectively and n denotes the number of mesh network hops

required to reach the destination (0 < n ≤ 8). Although the difference to

access MPB and DRAM is 46 DRAM cycles, accesses to the MPB bypass

the L2 cache, which can not be flushed or invalidated from hardware. The

obvious drawback of using the MPB is its small size (8KB per core).

2.1.1 SCC Address Spaces

The SCC uses 32-bit Pentium cores. A programmable, software-managed

translation table (called Look-Up Table or LUT) enables the system to extend

10 CHAPTER 2. BACKGROUND

0

:

34

35

36

37

38

:

40
:

128

131

132
:

159

:

192

:

215
:

224

:

247

:

250

251

:

255

:

Private

POPSHM

Unused

SCC shared

User shared

MPB

Management Console

TCP/IP Interface

VRC

Configuration Register

LUT Entry Default MapReduce

Figure 2.2: Defauly mappings of LUT entries at runtime.

the width of physical addresses to 34 bits, allowing system configurations

with to up to 64 GB of off-chip memory (specifically, up to 16 GB for each

of four groups of six tiles). The LUT has 256 entries, each mapping 16MB

of DRAM. Software control of LUT mappings provides a convenient tool for

implementing hybrid private and shared address spaces in the system.

Figure 2.2 shows the default configuration of LUT entries. The SCC

reserves 41 (0–40) entries at the bottom of the LUT to map up to 656 MB

2.1. INTEL SINGLE-CHIP-CLOUD-COMPUTER (SCC) 11

of private physical memory for each core. The operating system running on

the core uses part of this memory, while the user can use the rest. Intel

provides a custom Linux kernel that during the boot process, allocates 5

(34–38) contiguous entries from each core’s private address space. This new

address space called POPSHM. Four entries (128–131) in the LUT are shared

among all cores. Some parts of this shared memory are used by system

services2. Entries 192–215 in the LUT map MPBs and entries 224–247 map

configuration registers of cores. Entry 250 addresses the system interface;

access to this memory is confined to the PCIe driver. Entry 251 addresses

the voltage regulator control (VRC) registers. There is no restriction in

reprogramming LUT entries to translate to a different address space during

the execution of a program.

2.1.2 SCC System Software

From the programmer’s point of view, SCC resembles a cluster with portions

of memory shared between cores. Each core runs its own image of the Linux

kernel. Cores communicate through messages and several libraries that pro-

vide message passing primitives are available to programmers like RCCE [3]

and RCKMPI [16]. Small messages can be exchanged directly on-chip us-

ing the MPBs. Large messages on the other hand can be exchanged via a

memory copy in DRAM. Figure 2.3 shows the flow of messages in both cases,

using an example where core 0 sends a message to core 47. When sending

a small, less than 8KB (MPB size), message, the sender writes the message

in its local MPB. The L2 cache is bypassed and the L1 cache is configured

as write no-allocate. The sender stores flags in the MPB to synchronize this

operation with the receiver. When the data is ready, the receiver can read

2e.g. MCPC and the on-die network driver that allows TCP traffic from core to core.

12 CHAPTER 2. BACKGROUND

CPU 0

Private

DRAM

L1 Cache

L2 Cache

CPU 47

Private

DRAM

L1 Cache

L2 Cache

.

.

.

MPB 0

MPB 1

MPB 46

MPB 47

S
h

a
re

d
 o

ff
-c

h
ip

 D
R

A
M

S
h

a
re

d
 o

n
-c

h
ip

 M
P

B

off-chip memory

on-chip memory

data buffer

off-chip data flow
on-chip data flow

Figure 2.3: Message flow using off-chip DRAM and on-chip MPB.

the data to its private memory through its own L1 cache. The MPB provides

higher bandwidth and lower latency than the available shared memory. In

spite of this advantage, message passing for messages larger than 8KB can

be faster through DRAM, due to protocol overheads related to the small size

of the MPB and the necessity to split and reassemble parts of the message

into the whole message. The alternative solution is to use shared DRAM to

exchange messages greater than 8KB . The L2 cache can still be bypassed in

this case, to avoid severe cache pollution. When transmitting a large mes-

2.2. THE MAPREDUCE PROGRAMMING MODEL 13

sage, the sender writes the whole message in shared memory. The L1 caches

need to be flushed to maintain coherence and consistency. The receiver can

read the whole message from shared memory through the L1 cache. The

SCC provides a facility to invalidate all MPB data with a single instruction

(CL1INVMB), flush all L1 cache data with a single instruction (INVFLUSH),

or invalidate all L1 cache data with a single instruction (INV). Due to the

lack of a hardware flush/invalidate mechanism, the processor can use a soft-

ware memory driver to flush the L2 cache, if needed. Selective use of the

L1 and L2 caches is critical for performance and we revisit this issue while

discussing the implementation of HyMR on the SCC.

2.2 The MapReduce Programming Model

2.2.1 Programming Model

MapReduce is a set of language abstractions, inspired by Lisp [11], to ex-

press data-parallel computations and aggregations. The MapReduce pro-

gramming model is widely popular among developers of algorithms for Big

Data analytics. MapReduce is commonly employed for running crawling and

machine learning algorithms on large volumes of text and image data, as

well as processing large graphs [11, 17, 18, 19]. Practical implementations

provide MapReduce abstractions as a library API or embed MapReduce in

a high-level language, such as Java [20, 21, 12, 22, 23, 24, 25, 26, 27, 28].

A MapReduce application applies a parallel operator, the map function,

on input data structured as a sequence of <key,value> pairs. The output

of the map function is a set of intermediate <key,value> pairs. A user-

defined reduction operator, the reduce function, aggregates the intermediate

pairs according to their keys. Finally, the aggregated pairs are sorted by key

14 CHAPTER 2. BACKGROUND

value. Aggregation and sorting are optional in MapReduce applications. The

language or library may provide standard aggregators and sorting functions

for high performance and ease of programming.

Figure 2.1 shows a classic MapReduce example that counts the number of

occurrences of each word in a collection of documents [11]. The map function

emits each word from the documents with a temporary count of occurrences

set to 1. The reduce function measures the total number of occurrences for

each unique word. MapReduce is an extremely simple programming model.

The programmer applies operators on data lying in a single logical address

space, albeit the actual implementation may distribute data between physi-

cally separate memories and disks. The operators adhere to a share-nothing

model, which virtually eliminates races, deadlocks, and most complexities

that render correctness checking hard on conventional parallel programming

models. On the flip side, the performance of MapReduce programs is heavily

dependent on the implementation efficiency and scalability of the runtime

system.

2.2.2 MapReduce Runtime Systems

To MapReduce runtime system (Figure 2.4) splits input pairs into work units.

Tasks executing the map function (mappers) process work units in parallel

across multiple nodes, processors, or cores. The runtime system partitions

the intermediate pairs produced from mappers into buckets with each bucket

holding pairs with the same key. These buckets, called partitions, are dis-

tributed between tasks executing the reduce function (reducers). The run-

time system finally merges and sorts the output pairs produced by reducers.

A MapReduce runtime system must optimize execution-time parame-

ters such as the size of work units, the number of mappers and reducers,

2.2. THE MAPREDUCE PROGRAMMING MODEL 15

Listing 2.1: WordCount algorithm in MapReduce
// input : a document
// in t e rmed ia t e output : key=word ; va lue=1
Map(St r ing input) {

for each word w in input
EmitIntermediate (w, 1) ;

}

// in t e rmed ia t e output : key=word ; va lue=1
// output : key=word ; va lue=occurences
Reduce (S t r ing key , I t e r a t o r va lue s) {

int r e s u l t = 0 ;
for each v in va lue s

r e s u l t += v ;
Emit (key , r e s u l t) ;

}

the assignment of work units to nodes, processors or cores and the alloca-

tion and management of buffer space between stages of the computation.

The runtime can perform several additional optimizations: eliminate global

synchronization between stages of MapReduce, using a dataflow execution

model [29]; eliminate function call overheads by increasing the granularity of

work units [20, 21]; reduce load imbalance also by adjusting the granularity

of work units and/or the number of mappers and reducers [30]; optimize lo-

cality and overlapping computation with data transfers by prefetching work

units [31]; and conserve bandwidth and cache space via hardware compres-

sion [32]. The runtime system can also provide scalable, application-specific

fault tolerance, which is beyond the scope of this work.

16 CHAPTER 2. BACKGROUND

 Map Task 1 Map Task 2 Map Task 3

Partition Function Partition Function Partition Function

M M M M M M

k1:v k1:v k2:v k1:v k3:v k4:v k4:v k5:v k4:v k1:v k3:v

chunk 0 chunk 1 chunk2 chunk 3 chunk 4 chunk 5

Group Group

k2:v k4:v,v,v k5:v k1:v,v,v,v k3:v,v

Reduce Task 1 Reduce Task 2

R R R RR

Figure 2.4: Typical MapReduce workflow.

Chapter 3

DiMR Design and

Implementation

To place HyMR in context, we first discuss present a reference implemen-

tation of the MapReduce runtime system using exclusively message passing

over distributed address spaces. This design views the SCC as a cluster of

single-core nodes, each with its own Linux image. Cores exchange messages

using the RCCE library [3]. A detailed description of the reference design is

available in [33].

The reference design implements a seven-stage runtime system for MapRe-

duce. We refer to the seven stages as map, combine, partition, group, re-

duce, sort and merge. The combine and merge stages are optional in typical

MapReduce setups, whereas the group stage replaces an intermediate sort-

ing stage of MapReduce to reduce computational complexity [24, 26, 20, 23].

Figure 3.1 shows the stages and what messages are exchanged between cores

in each of them. We use the WordCount benchmark as an example to explain

the details of these stages.

In the map stage, the runtime system divides the input evenly to as many

17

18 CHAPTER 3. DIMR DESIGN AND IMPLEMENTATION

Input Data

Core0 Core1 CoreN-1 CoreN . . .

Core0 Core1 CoreN-1 CoreN . . .

Core0 Core1 CoreN-1 CoreN . . .

Map

Combine

(Optional)

Partition

Core0 Core1 CoreN-1 CoreN . . .

Core0 Core1 CoreN-1 CoreN . . .

Core0 Core1 CoreN-1 CoreN . . .

Group

Reduce

Sort

(Optional)

Core0 CoreN-1 . . .

Core0

Merge

(Optional)

Output Data

Chunk0 Chunk1 ChunkN-1 ChunkN

Figure 3.1: The flow of MapReduce Runtime using Message Passing.

partitions1 as the number of cores. Each core then executes the user-defined

map function over the data in its private partition. During this stage the

runtime does not exchange any messages between cores. This function takes

a key-value pair as input and produces one or more intermediate key-value

pairs. The volume of the intermediate output is unknown until runtime. To

reduce memory management overhead, the reference design preallocates a

large chunk of memory (64 MB in our implementation) to hold intermediate

data and allocates more space on demand, if the intermediate data over-

flows the preallocated chunk. To split intermediate data between different

partitions, the reference implementation provides an option between a user-

1Not to be confused with the partition stage of the MapReduce runtime system.

19

defined hash function and a generic hash function, the latter implemented in

the MapReduce runtime system. The hash function takes a key as an argu-

ment and returns the ID of a partition to store the generated intermediate

key-value pair. Each core emits keys and values in a contiguous buffer.

The combine executes if and only if the user provides a combiner function.

This stage is executed locally, as does map, and does not exchange messages

between cores. The purpose of this stage is to reduce locally the size of each

partition produced by a given core during Map. The combiner function takes

a key and a list of partially aggregated intermediate values associated with

the same key, as input. It produces a single key-value pair where the value

is an updated partial aggregation of the values associated with the key, as

output. After Combine stage we synchronize the cores using a barrier.

The partition stage performs an all-to-all exchange between cores. Data

partitions generated during Map may differ in size. The reference implemen-

tation uses a custom all-to-all exchange algorithm for the SCC to achieve

scalable data partitioning. The algorithm first executes an all-to-all exchange

of the intermediate partition’s sizes, followed by an all-to-all exchange of the

intermediate data [33]. The algorithm implements the all-to-all exchange us-

ing pairwise exchanges. Let p be the number of available cores and rank the

core ID. This algorithm uses p− 1 steps and in each step k the core ranked

as i receives data from core i − k and sends data to core i + k. We use the

RCCE_{send, recv} functions to implement this all-to-all exchange.

The group stage groups together all key-value pairs with the same key,

taken across all intermediate data partitions. All the data needed is in each

core’s private memory. There is no need to exchange any messages between

cores in this stage. In prior research [24, 26, 20, 23], generic sorting with a

user-defined comparator was used to perform grouping in MapReduce. Our

20 CHAPTER 3. DIMR DESIGN AND IMPLEMENTATION

0 1 2 3 4

Number of Items (millions)

0

4

8

12

16

20

S
e
c
o
n
d
s

Quick Sort

Radix Sort

Figure 3.2: Libc qsort vs. radix sort, for a variable number of word-size
elements

reference implementation uses a variant of radix sort [34] for grouping on

the SCC. The quicksort algorithm employed in prior MapReduce implemen-

tations on multi-core systems has complexity O(nlogn), whereas radix sort

has complexity O(kn) where k is the size of the key in bytes. Figure 3.2

shows a comparison of the libc quicksort implementation and our radix sort

implementation for different input sizes. This measurements are taken from

one core on the SCC. Radix sort outperforms quicksort but with one caveat.

Radix sort sorts strings of bytes and can not use a user-defined comparator

for sorting. This caveat implies that in applications where the key data type

is not a string, radix sort may produce unsorted sequences that need to be

processed further in the following stages of MapReduce. In the common case,

the data produced before the reduce stage is more than the data produced

after the execution of reduce stage. This happens because key duplication in

the data generated before the reduce stage. Following the reduce, there are

only distinct keys and a single value associated with each key. We choose to

21

run the actual sorting algorithm after the reduce stage.

The reduce stage executes a user-defined key aggregation function. The

prior group stage exports an array of distinct keys, each containing the num-

ber of occurrences of the key and a pointer to an array of its values. The

output size of the reduction stage can be statically identified, therefore the

implementation preallocates the stage’s output buffers. In the sort stage, the

implementation sorts the key-value pairs produced following the reduction,

using sequential quicksort and a user-specified comparison operator. Both

reduce and sort stages locally on private memory and do not exchange any

messages between cores. Finally an optional merge stage merges the output

of all cores in one core. The reference implementation uses the binomial

merge algorithm for this stage [35], which completes in logn steps. In each

of these steps the cores exchange the previously merged output data.

22 CHAPTER 3. DIMR DESIGN AND IMPLEMENTATION

Chapter 4

HyMR Design and

Implementation

In a hybrid address space design, a runtime system uses on-chip communi-

cation paths for small data transfers, such as the data transfers needed to

pass pointers for the purposes of scheduling computation and data transfers

between cores, and off-chip communication paths through shared memory,

for performing transfers of large volumes of application data. HyMR im-

plements a staged execution model. We elaborate why while certain stages

are best implemented over a distributed address space, other stages are best

implemented over a shared address space.

4.1 HyMR Stages

Figure 4.1 shows the stages of HyMR. HyMR has four stages compared with

DiMR which has seven stages. In HyMR we merge Map and Combine into a

single stage. We remove Group stage from DiMR. The new implementation

of Map stage allows us to have intermediate data grouped before Reduce

23

24 CHAPTER 4. HYMR DESIGN AND IMPLEMENTATION

Input Data

Core0 Core1 CoreN-1 CoreN . . .

Core0 Core1 CoreN-1 CoreN . . .

Map and
Combine

Partition

Core0 Core1 CoreN-1 CoreN . . . Reduce

Sort
(PSRS)

Output Data

Chunk0 Chunk1 ChunkN-1 ChunkN

Core0 Core1 CoreN-1 CoreNLocal Sort

Merge Previously Sorted Partitions

Core0 Core1 CoreN-1 CoreN
 . . .

POPSHM Memory (Intermediate Data)

Private Memory (Local Data)

Shared Memory (Input - Output Data)

Core0 Core1 CoreN-1 CoreN

Figure 4.1: The flow of MapReduce Runtime using Hybrid Address Spaces.

stage. We merge Sort and Merge stage into a singe Sort stage. This stage

implemented using shared memory and there is no need to further merge the

sorted partitions. We keep Partition and Reduce stages the same as reference

design.

We guarantee coherence at the granularity of stages in HyMR. We flush

the L2 cache following the execution of mappers and combiners, as the pri-

vately owned POPSHM address space is cacheable and the SCC has no native

hardware support for cache coherence. The flush completes with a memory

4.1. HYMR STAGES 25

barrier. In Partition and Reduce stages there is no synchronization because

both of them executed in private address space. This allows us also to re-

move the need to flush the caches in order to guarantee coherence between

these two stages. In order to make sure that all cores finished with Reduce

stage we execute a barrier before Sort stage. As Sort stage contains four

sub-stages we have to synchronize this execution. We provide more details

in Section 4.1.5.

4.1.1 Scalable Custom Splitters

HyMR uses scalable input splitters over a shared address space. The in-

put is stored in shared memory and accessible from all cores. The input

is read-only so there is no need for synchronization in accessing the input

during splitting. Each core retrieves a private partition of the input without

communicating with other cores, using a local, sequential prefix-scan algo-

rithm. Therefore, splitting can be implemented entirely in parallel. Following

splitting, each core allocates a queue in it’s own MPB buffer for the input

key-value pairs. The runtime executes a user-specified map function on each

item in the queue. The split function distributes the input evenly between

cores, although application-specific splitters can be used in the same context

for better load balancing. HyMR provides three application-specific splitters,

a text splitter, a line splitter and a generic splitter. Users may also imple-

ment a custom splitter to divide the input size in a different way than the

three provided splitters. The generic splitter uses the prefix-scan algorithm

running independently on each core, to identify the beginning of each core’s

chunk in the input. The text and line splitters divide characters or text lines

as evenly as possible between cores.

26 CHAPTER 4. HYMR DESIGN AND IMPLEMENTATION

4.1.2 Map

Map tasks have no side effects and no dependencies between them [11].

Therefore, they are suitable for running in a distributed address space with-

out cache coherence. The runtime system stores the output of each mapper

task running on a core in the core’s POPSHM addess space.

Each core executes mappers that process a queue of inputs provided from

splitters. Mappers emmit intermediate key-value pairs, using user-specified

hash function to distribute their intermediate outputs between as many par-

titions as the number of cores. These partitions are aggregated in following

MapReduce stages. Each core uses a private POPSHM address space for

mapping data. This space is represented by five LUT entries, or 80MB. The

output of mappers is held in containers, implemented as an array of lists

of values, with one list per key. We use a hash table with open addressing,

which is faster than separate chaining, Red-Black trees and AVL trees, which

we also evaluated on the SCC. The hash table contains 4096 buckets. We

implement dynamic resizing of the hash table if a core exports more than

4096 intermediate key-value pairs. We double the size of the table when the

fraction of used buckets in the table exceeds a predefined threshold (cur-

rently set to 0.8). We use quadratic probing to resolve collisions. Each core

cannot export more than five LUT entries, or 80MB of intermediate data.

The POPSHM implementation in the Linux kernel defines this limit. The

runtime system performs no deallocation of POPSHM address space. We

implement a low latency custom memory allocator to avoid the overheads of

storing information that needs on deallocation. This allocates memory in an

ascending manner.

HyMR combines the output of mappers, by reducing the data with a

user-defined aggregator. The distributed memory implementation uses an

4.1. HYMR STAGES 27

Step 0

Core 0 Core 1 Core 2 Core 3

POPSHM 0 POPSHM 1 POPSHM 2 POPSHM 3

Step 1

Core 0 Core 1 Core 2 Core 3

POPSHM 0 POPSHM 1 POPSHM 2 POPSHM 3

Step 2

Core 0 Core 1 Core 2 Core 3

POPSHM 0 POPSHM 1 POPSHM 2 POPSHM 3

Step 3

Core 0 Core 1 Core 2 Core 3

POPSHM 0 POPSHM 1 POPSHM 2 POPSHM 3

Figure 4.2: The algorithm to avoid memory contention in Rearrange stage.

all-to-all exchange at this stage. We optimize reductions by performing an

in-place aggregation of intermediate data in private memory, as the data is

produced by mappers. This minimizes space and time overhead by avoiding

redundant memory allocation and storing only aggregated data.

28 CHAPTER 4. HYMR DESIGN AND IMPLEMENTATION

4.1.3 Partition

HyMR uses shared memory to implement an all-to-all exchange of the, typ-

ically voluminous data, emitted from mappers. We merge all intermediate

containers of each core in a single container stored in private memory. This

container contains <key, list-of-values> pairs. We store distinct keys and

for each key we assign a list of all values produced by all cores during Map

stage. We then go through an iterative process where in each iteration, we

modify the LUTs of a core to map to the POPSHM private address space

of another core. The runtime system knows at execution time the starting

physical address of each POPSHM segment. We use an Intel driver to map

the physical addresses of each POPSHM segment to the virtual address space

of user programs. We manage coherence explicitly, by marking the pages in

POPSHM address space as non-cacheable by L2 cache. The SCC does not

provide a hardware mechanism to flush or invalidate all cache lines in the

L2 cache and a software implementation is prohibitively expensive. Given

that all POPSHM pages are read-only in this stage, there is no need to flush

the L2 caches. Therefore, the runtime just invalidates the MPB pages af-

ter each remapping. The remapping process requires as many iterations as

the number of cores. To avoid contention when two or more cores access

DRAM through the same memory controller, each core begins remapping

from its local core’s POPSHM and increases POPSHM index in a circular

way. Figure 4.2 shows this algorithm using 4 cores as an example. This

proces guarantess that memory traffic and contention are balanced between

the memory controllers. Remapping POPSHM address spaces requires no

synchronization.

4.1. HYMR STAGES 29

4.1.4 Reduce

HyMR uses both the private and the shared address spaces to implement

reduce stage. The input data of this stage stored in private memory of each

core. We store the output data in the shared memory to execute the next

stage. Before the execution of this stage each core has in its private memory

a hash table of all <key, list-of-values> pairs on which it has to execute the

user-defined reduce function. We iterate through each <key, list-of-values>

pair and call the user specified reduce function on it. HyMR provides an

iterator interface for the list-of-values that the user can use inside the reduce

function. The result of each reduce call is an output key-value pair. We use

shared memory to store these pairs in order to all cores can access these in

the next stage.

4.1.5 Sort

The distributed address space implementation of MapReduce uses a binomial

merge algorithm based on message passing. In HyMR, the output is stored

in shared memory instead and all cores execute parallel sorting using regular

Sampling (PSRS) [36]. The authors in [36] claim that if the input has no

duplicate keys this algorithm has good load-balancing properties compared

to the other parallel sorting algorithms. In MapReduce the input of this

stage has no duplicate keys.

In PSRS, each core exports in shared memory an array of output key-value

pairs. In this step, the runtime has to merge as many arrays as the number

of cores into a single array, which is also sorted. Parallel sorting algorithms

choose c−1 pivots and split the input into c partitions, c the number of cores.

The cores exchange data to retrieve their respective partitons and sort each

30 CHAPTER 4. HYMR DESIGN AND IMPLEMENTATION

0 16 32 48

#cores

0

16

32

48
S

p
e
e
d
u
p linear

8M

4M

2M

1M

Figure 4.3: Speedup of PSRS implementation over sequential libc qsort.

partition locally. The selection of pivots is critical for load balancing.

PSRS has four stages. Assume that the runtime system must sort n keys

on c cores. In the first phase, each core uses quicksort to sort its share of

the elements, which is no more than dn/ce. Each core selects the data items

with indices 0, n/c2, 2n/c2, ..., (c− 1)(n/c2) as a regular sample of its locally

sorted block. In the second phase of the algorithm, one core gathers and

sorts the local regular samples. It selects c− 1 pivot values from the sorted

list of regular samples. The pivot values are at indices c + bc/2c − 1, 2c +

bc/2c − 1, ..., (c − 1)c + bc/2c in the sorted list of regular samples. At this

point each core partitions its sorted sublist into c partitions, using the pivot

values as separators between partitions. In the third phase of the algorithm,

cores exchange partitions. During the fourth phase, each cores merges its

c−1 partitions with its private partition into a single list. The values on this

list are disjoint from the values on the lists of other cores. At the end of this

phase the elements are sorted in a single array.

4.2. MAPREDUCE OPTIMIZATIONS 31

We implement a hybrid address space version of PSRS using on-chip MPB

buffers for synchronization data instead of using shared memory to minimize

latency and achieve simple coherence maintenance. The authors in [36] pro-

pose that only one core (without loss of generality, core 0) can choose the

samples and sort them to find the actual pivots. This method requires how-

ever 2 barriers. Since input data is read-only and PSRS is not in-place,

we can lift the restriction that only one core chooses the pivots. All cores

choose the pivots with the same PSRS algorithm, without synchronization.

As all data reside in off-chip shared memory and all cores can access the

data through LUTs, there is no need to execute an all-to-all exchange. The

runtime system allocates space for the output array in shared memory and

stores the sorted partitions into this array.

Figure 4.3 shows the speedup of the hybrid address space implementation

of PSRS over the sequential libc qsort implementation. We use the same qsort

implementation in the first phase of PSRS.

4.2 MapReduce Optimizations

HyMR uses several additional optimizations that leverage hybrid address

spaces.

4.2.1 Optimizing On-Chip Barriers

We revisited several scalable barrier algorithms presented in [37], to explore

how these algorithms perform and should be revised in the presence of a

private, on-chip address spaces with fast communication paths that do not

involve off-chip memory. We implemented the algorithms with on-chip data

transfers, keeping shared data (e.g. counters) in the MPB buffers and using

32 CHAPTER 4. HYMR DESIGN AND IMPLEMENTATION

0 10 20 30 40 50

#cores

100

1000

10000

100000

1000000

L
a

te
n

c
y
(#

c
y
c
le

s
)

RCCE_barrier

Centralized

Dissemination

Tournament

Tree

Figure 4.4: Comparison of barrier algorithms in SCC.

the cacheable private address space of each core otherwise. We leverage the

on-chip shared memory because the shared data needed to implement syn-

chronization algorithms has a very small memory footprint. Furthermore, the

runtime system can bypass the L2 cache and use the CL1INVMB instruction

to invalidate data before reads, or the write no-allocate policiy with a write

combining buffer for writes.

We experimented with the Centralized Barrier, Tournament Barrier, Tree

Barrier and Dissemination Barrier from [37]. We compare these algorithms

against the barrier implementation provided with RCCE named RCCE_barrier.

This is a simple, similar to a centralized, counter-based barrier with local

sensing but instead of a single counter, each core has its own local counter

stored in MPB buffers. This reduces the contention in MPB memory com-

pared with Centralized Barrier. Figure 4.4 compares the barrier implemen-

tations. In the Centralized Barrier all shared data is stored in a single MPB.

4.2. MAPREDUCE OPTIMIZATIONS 33

The latency that each core expends to access that MPB depends on the

number of hops in the SCC 2D mesh interconnect. The Centralized Bar-

rier algorithm is ill-suited for many-core processors with distributed on-chip

memory. The RCCE_barrier has the disadvantage that a single root core

must update a flag on each other core that participates in the barrier. All

other algorithms distribute shared data between MPB buffers in a way that

minimizes accesses to remote MPB buffers. Figure 4.4 indicates that the

Dissemination Barrier algorithm fits the SCC best. In [37] the authors

show that Dissemination Barrier has the lowest latency compared with the

other algorithms. We show that Dissemination Barrier also fits on SCC

distributed on-chip memory architecture. The Dissemination Barrier algo-

rithm executes log c rounds to propagate arrival and departure notifications

between cores using point-to-point communication between MPBs.

4.2.2 Interrupt-less Work-Stealing

On the SCC, the latency for accessing DRAM depends on the number of hops

that the access must traverse in the chip’s 2D mesh until it reaches a specific

memory controller that serves all accesses from the issuing core. In memory-

intensive applications this architectural feature can introduce load imbalance.

We implement a work stealing algorithm inspired by Cilk [38], using however

the MPB to implement fast, on-chip communication between the local core

schedulers. We implement scheduling dequeues as non-cacheable queues and

preserve coherence for the state of dequeues using explicit invalidation of

entire MPB buffers. We use this work-stealing only in Map stage. The other

stages can be balanced using a good hash function in Map stage. Although

we implement Map stage using distributed memory we choose to implement

work-stealing using on-chip shared-memory (MPB buffers). Using shared-

34 CHAPTER 4. HYMR DESIGN AND IMPLEMENTATION

memory the thief can get a portion of work from the victim without interrupt

it’s execution. The thief choose victims randomly.

Chapter 5

Experimental Analysis

We compare HyMR to the reference distributed address space implemen-

tation, which we refer to as DiMR. We perform further comparisons with

Phoenix++, a state-of-art implementation of MapReduce for multi-core sys-

tems with hardware-supported cache coherence [12]. We use four bench-

marks which are representative of MapReduce applications with a varying

number of distinct intermediate keys:

• WordCount counts the number of occurrences of each word in text files.

The map function splits the input text into words, whereas the reduce

function sums the number of occurrences of each word to produce a

final count. The number of distinct intermediate keys is the number of

distinct words in the text files.

Application Input size
WordCount 400 MB
Histogram 1.6 GB
LinearRegression 400 MB
MatrixMultiply 2048 ∗ 2048 Matrices

Table 5.1: MapReduce application workloads

35

36 CHAPTER 5. EXPERIMENTAL ANALYSIS

• Histogram counts the frequency of occurrences of each RGB color com-

ponent in an image file. The map function emits the occurrences of each

color component in pixels and the reduce function produces the sum

of occurrences of each component. The maximum number of distinct

intermediate keys is 3× 256.

• LinearRegression computes a line of best fit for a set of points, given

their 2D coordinates. Map computes intermediate summary statistics

for the points like the sum of squares, while reduce gathers all data

of each of the summary statistics and calculates the best fit. This

benchmark exports 5 intermediate keys.

• MatrixMultiply multiplies two dense matrices of integers. In this bench-

mark the Map function implements the matrix multiplication kernel

and does not emit any intermediate data. The runtime splits the input

and each chunk is a row of each input matrix. The runtime also uses

work-stealing to balance the load between the available cores.

We choose benchmarks that vary in the number of distinct intermedi-

ate keys that they produce, to stress different stages of the MapReduce

runtimes. WordCount represents one extreme case, by exporting as many

number of intermediate keys as the number of words in the input text files.

MatrixMultiply represents the other extreme, since it does not produce any

intermediate keys. Histogram and LinearRegression are between these lim-

its. Histogram exports from 0 to 768 distinct intermediate keys depending

on the input. LinearRegression exports 5 distinct intermediate keys for every

input. Benchmarks that emit a large number of intermediate keys stress the

Combine, Rearrange and Merge stages. In the other hand of no intermediate

keys we stress the Map stage.

37

0.0

0.1

0.2

0.3

0.4

0.5

0.6
S

e
c
o
n
d
s

Histogram

0.0

0.1

0.2

0.3

0.4

S
e
c
o
n
d
s

LinearRegression

Merge

Reduce

Partition

Map

0

10

20

30

40

50

S
e
c
o
n
d
s

MatrixMultiply

0

2

4

6

8

10

12
S

e
c
o
n
d
s

WordCount

Merge

Reduce

Partition

Map

Figure 5.1: DiMR (left bar) vs. HyMR (right bar) performance

Table 5.1 lists the MapReduce application workloads that we used for

experiments. We use an SCC node, where each tile of cores runs at a fre-

quency of 800MHz, the mesh interconnect runs at a frequency of 800MHz

and DRAM runs at a frequency of 800MHz. We use sccKit 1.4.1.3 and each

core runs Linux kernel version 2.6.38. We use version 4.5.2 of GCC and G++

compilers.

38 CHAPTER 5. EXPERIMENTAL ANALYSIS

Application Partition Speedup Merge Speedup
WordCount 6.64× 9.61×
Histogram 1.48× 0.69×
Linear Regression 1.28× 0.78×
Matrix Multiply 1.00× 1.00×
GeoMean 1.88× 1.50×

Table 5.2: Speedup for partition and merge stages computed using DiMR
execution time over HyMR execution time using 48 cores.

5.1 Message-Passing vs. Hybrid-Adress-Spaces

We first compare DiMR (Section 3) to HyMR (Section 4), in terms of aboslute

performance. WordCount generates the largest number of distinct interme-

diate key-value pairs among the benchmarks, thus stressing the Combine,

Partition and Merge phases of MapReduce. Figure 5.1 shows the break-

down of execution time of each benchmark with DiMR (left) and HyMR

(right). For these results, we use 48 cores of the SCC. We note that in all

cases, execution time is dominated by the Map stage. This indicates that

both DiMR and HyMR have been heavily optimized to avoid bottlenecks

during communication-intensive stages, such as partitioning and sorting [24].

The Map stages includes the Map and Combine phases in our implementa-

tion for both runtimes. With hybrid memory, we use work stealing and the

HyMR’s optimized combiner. These two optimizations justify why HyMR

Map is faster than the DiMR Map. HyMR also uses a global address space

in shared memory for the Partition stage. This allows the runtime system to

use hash table with open addressing to store intermediate data. This data-

structure enable the implementation of a more efficient combiner. In DiMR,

the runtime system stores intermediate data as raw data and the processing

of this data adds several overheads.

The workload of tasks in the Map stage is not the same across tasks.

5.2. SCALABILITY 39

Tasks exhibit variation in their execution time for different chunks of input

data, thus load-balancing is necessary in a MapReduce runtime system. A

shared address space enables an efficient implementation of interupt-less load-

balancing in HyMR using work-stealing.

The Partition stage is based on a all-to-all exchange, implemented with

message passing in DiMR, but on shared memory, through LUT remapping,

in HyMR. Table 5.2 shows the speedup that shared memory all-to-all ex-

change achieves over message passing all-to-all exchange for all benchmarks,

using 48 cores. These results illustrate that a cache-bypassing, all-to-all ex-

change in place in shared memory performs better in all cases. Benchmarks

with many intermediate keys have larger performance gains. In MatrixMul-

tiply, the only exception, neither runtime executes the Partition stage.

HyMR and DiMR have identical implementation of the Reduce stage. In

the Merge stage, DiMR uses the binomial merge algorithm whereas HyMR

uses sorting with regular sampling. Table 5.2 shows the speedup that HyMR

achieves over DiMR during the Merge stage, for all benchmarks using 48

cores. WordCount has the largest number of output keys and the performance

gain is the most significant in comparison to other benchmarks. Histogram

and LinearRegression indicate a small slowdown from using hybrid address

spaces. MatrixMultiply does not execute a Merge stage.

5.2 Scalability

Overall, HyMR consistently outperforms DiMR on the SCC. To compare

HyMR with Phoenix++, we evaluate the latter on a 48-core cache-coherent

multi-processor, with 4 AMD Opteron 6172 processors running at 2.1GHz

and 64GB of DRAM. This system runs Linux version 2.6.32 and the 4.7.0

40 CHAPTER 5. EXPERIMENTAL ANALYSIS

version of GCC and G++ compilers. Our comparison is not a direct one, as

the SCC and AMD systems have fundamentally different processors, memory

management units and communication substrates. While the cache-coherent

AMD system would support distributed memory and hybrid address space

implementations, these implementations would all be underpinned by the

hardware coherence protocol, which would render message passing with di-

rect core-to-core communication, as in the SCC, infeasible. Conversely, a

shared memory implementation of the runtime system on SCC would re-

quire a software virtual memory coherence protocol, which is hard to scale

on many cores. It is for these reasons that we compare MapReduce implemen-

tations on different platforms and use two metrics that partially neutralize

the underlying architecture: scalability, percentage of peak data processing

bandwidth (bandwidth utilization) achieved by each implementation.

Figure 5.2 indicates that in all cases HyMR achieves almost linear speedup

whereas Phoenix++ encounters scalability bottlenecks, usually at 32 cores.

In both HyMR and Phoenix++, the execution time dominated by the Map

stage (Figure 5.1), which includes the Combine stage in both implementa-

tions. These stages are fully parallel, with no application data communica-

tion and low synchronization activity between cores. The actual problem of

Phoenix++ is false sharing, as an effect of data structure layout and the the

hardware-supported cache-coherence protocol. We use distributed memory

during Map and Combine stages. This allows us to remove the false shar-

ing problem. Interestingly, the scaling gap between HyMR and Phoenix++

increases with the number of cores.

5.3. SUSTAINED TO PEAK BANDWIDTH 41

0 10 20 30 40 50

#cores

0

10

20

30

40

50
S

p
e
e
d
u
p

Histogram

0 10 20 30 40 50

#cores

0

10

20

30

40

50

S
p
e
e
d
u
p

LinearRegression

Ideal

Phoenix++

HyMR

0 10 20 30 40 50

#cores

0

10

20

30

40

50

S
p
e
e
d
u
p

MatrixMultiply

0 10 20 30 40 50

#cores

0

10

20

30

40

50
S

p
e
e
d
u
p

WordCount

Ideal

Phoenix++

HyMR

Figure 5.2: Speedup of benchmarks on the SCC (using HyMR) and AMD
(using Phoenix++) systems.

5.3 Sustained to Peak Bandwidth

As MapReduce fundamentally targets data-intensive applications, the data

processing bandwidth of the MapReduce runtime system is a proper metric

for evaluation. We compare the bandwidth that each benchmark achieves

normalized to the peak data streaming bandwidth in each of our two plat-

forms. In both cases we measure the peak bandwidth using the STREAM

benchmark [39, 40] (Triad case). Figure 5.3 shows the peak bandwidth

that each system achieves, as reported by the STREAM benchmark. AMD

42 CHAPTER 5. EXPERIMENTAL ANALYSIS

0 10 20 30 40 50

#cores

0

10

20

30

40

50

60

70
G

B
/s SCC

AMD

Figure 5.3: Comparison between HyMR (SCC) and Phoenix++ (AMD)
bandwidth utilization.

Opteron cores run in 2.1GHz and use 64GB DRAM clocked at 1333MHz,

while and SCC cores in 800MHz and use 32GB DRAM clocked at 800MHz.

AMD Opteron processors also have a significantly more efficient ALU than

the outdated Pentium-class cores used on the SCC. These differences justify

the gap in available memory bandwidth between the two architectures. De-

spite this difference, we note that available bandwidth scales well with the

number of cores on the SCC but reaches a point of saturation at 32 cores on

the AMD system.

We measure the bandwidth that each benchmark achieves with HyMR

and Phoenix++. We normalize the measurements with the peak bandwidth

of the platform on which each runtime executes. This is an efficiency metric

with an ideal value of 1. Figure 5.4 shows that in WordCount, Histogram and

LinearRegression the bandwidth efficiency of HyMR exceeds the efficiency

of Phoenix++. Phoenix++ achieves higher bandwidth efficiency only in

MatrixMultiply, where the required memory bandwidth is at any rate low, as

5.3. SUSTAINED TO PEAK BANDWIDTH 43

0 10 20 30 40 50

#cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6
E

ff
ic

ie
n
c
y

Histogram

0 10 20 30 40 50

#cores

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
ff
ic

ie
n
c
y

LinearRegression

Phoenix++

HyMR

0 10 20 30 40 50

#cores

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

E
ff
ic

ie
n
c
y

MatrixMultiply

0 10 20 30 40 50

#cores

0.00

0.01

0.02

0.03

0.04

0.05
E

ff
ic

ie
n
c
y

WordCount

Phoenix++

HyMR

Figure 5.4: Bandwidth efficiency for our benchmarks.

the benchmark exhibits excellent locality. On average HyMR achieves 3.18×

better bandwidth efficiency than Phoenix++ on 48 cores.

44 CHAPTER 5. EXPERIMENTAL ANALYSIS

Chapter 6

Related Work

Several prior research efforts ported MapReduce to prominent hardware plat-

forms for high-performance computing, including cache-coherent multicore

processors [20, 21, 12, 22, 30] and non cache-coherent multicore proces-

sors [23, 24].

Phoenix, a port of MapReduce for cache-coherent shared-memory multi-

core systems [20, 21, 12], exploits locality implicitly by controlling the gran-

ularity of tasks and the assignment of tasks to cores. Phoenix performs

dynamic assignment of map and reduce tasks to cores. It controls task sizes

so that the working set of each task fits in the L1 cache of each core. Phoenix

also provides an option to perform prefetching in the L2 data cache. The main

focus in the design of Phoenix is on achieving scalability through NUMA-

aware memory management. Each map thread emits intermediate results on

a space allocated on the closest memory module to the CPU the thread is

scheduled on. In [21], the authors use a multi-layer approach to optimize

the runtime system. These layers include the algorithm, the implementation

and and the runtime-OS interaction. In the most recently published version

of Phoenix [12] the authors provides a modular, flexible pipeline that can

45

46 CHAPTER 6. RELATED WORK

be easily adapted by the user to the characteristics of a particular workload

while allowing users to write simple, strict MapReduce code. In [30] the

authors explore the design of the MapReduce data structures for grouping

intermediate key/value pairs. A different approach to optimize Phoenix is

proposed in [22] where the authors use "tiling strategy" to minimize task

memory footprints and improve cache locality. HyMR differs from Phoenix

in that it leverages both distributed and shared address spaces on-demand,

to improve scalability. However, the design and implementation of HyMR

do not prevent the horizontal (cache-level) or vertical (NUMA DRAM-level)

locality optimizations implemented in Phoenix++.

High-performance implementations of MapReduce have also been avail-

able on systems with distributed address spaces, most notably the Cell BE

processor [23, 24]. In these implementations, the runtime system controls

locality explicitly, using DMAs and software prefetching via multi-buffering

in the map, merge and sort stages. Contrary to Phoenix, the runtime system

does not hash and does not partition keys in per-core buffers, thereby elim-

inating memory copies, while still allowing a balanced distribution of work

during the sort and reduce stages. HyMR, contrary to the prior implementa-

tions of MapReduce on Cell, leverages both distributed and shared address

spaces. The use of shared address space with cache bypassing in HyMR

enables more efficient exchanges of large volumes of data between cores.

Chapter 7

Conclusions

This thesis presents the design and implementation of MapReduce runtime

system using hybrid address spaces. Many-core processors such as the SCC

processor provide communication pathways through distributed address spaces

or shared address spaces, both on-chip and off-chip. The idea elaborated in

this work as to use distributed address spaces in runtime system stages where

cores share nothing in terms of application data and only need to exchange

control messages for the purposes of scheduling and load balancing. The

absence of a hardware cache coherence protocol allows runtime systems to

scale almost perfectly in share-nothing stages. On the contrary, runtime

stages where cores exchange singificant volumes of application data are best

implemented in an off-chip shared address spaces. Where data is streamed

and there is no opportunity for data reuse, bypassing caches is the most

performant implementation option.

This thesis further argued that in staged runtime systems, an application-

specific implementation of cache coherence is scalable and performant. In

MapReduce specifically, the Map and Reduce stages are embarrassingly par-

allel and running them over a cache coherence protocol results in a perfor-

47

48 CHAPTER 7. CONCLUSIONS

mance hit.

The techniques presented in this thesis can be used to implement domain-

specific scalable runtime systems and scalable applications in future homo-

geneous many-core processors without hardware cache coherence, such as

Intel’s Runnemeede [41].

Bibliography

[1] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache

coherence is here to stay,” Commun. ACM, vol. 55, no. 7, pp. 78–89, Jul.

2012. [Online]. Available: http://doi.acm.org/10.1145/2209249.2209269

[2] D. Luebke, M. Harris, J. Krüger, T. Purcell, N. Govindaraju, I. Buck,

C. Woolley, and A. Lefohn, “GPGPU: general purpose computation

on graphics hardware,” in ACM SIGGRAPH 2004 Course Notes,

ser. SIGGRAPH ’04. New York, NY, USA: ACM, 2004. [Online].

Available: http://doi.acm.org/10.1145/1103900.1103933

[3] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,

J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core

scc processor: the programmer’s view,” in Proceedings of the 2010

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, ser. SC ’10. Washington, DC,

USA: IEEE Computer Society, 2010, pp. 1–11. [Online]. Available:

http://dx.doi.org/10.1109/SC.2010.53

[4] J. Kahle, “The Cell Processor Architecture,” in Proceedings of the 38th

annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO 38. Washington, DC, USA: IEEE Computer Society, 2005,

pp. 3–. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2005.33

49

http://doi.acm.org/10.1145/2209249.2209269
http://doi.acm.org/10.1145/1103900.1103933
http://dx.doi.org/10.1109/SC.2010.53
http://dx.doi.org/10.1109/MICRO.2005.33

50 BIBLIOGRAPHY

[5] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang, “Supporting

openmp on cell,” Int. J. Parallel Program., vol. 36, no. 3, pp.

289–311, Jun. 2008. [Online]. Available: http://dx.doi.org/10.1007/

s10766-008-0073-6

[6] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim,

and S. Han, “COMIC: a coherent shared memory interface for

Cell BE,” in Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, ser. PACT ’08.

New York, NY, USA: ACM, 2008, pp. 303–314. [Online]. Available:

http://doi.acm.org/10.1145/1454115.1454157

[7] M. Houston, J.-Y. Park, M. Ren, T. Knight, K. Fatahalian, A. Aiken,

W. Dally, and P. Hanrahan, “A portable runtime interface for multi-

level memory hierarchies,” in Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming, ser.

PPoPP ’08. New York, NY, USA: ACM, 2008, pp. 143–152. [Online].

Available: http://doi.acm.org/10.1145/1345206.1345229

[8] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a

programming model for the Cell BE architecture,” in Proceedings

of the 2006 ACM/IEEE conference on Supercomputing, ser. SC

’06. New York, NY, USA: ACM, 2006. [Online]. Available:

http://doi.acm.org/10.1145/1188455.1188546

[9] K. Chapman, A. Hussein, and A. L. Hosking, “X10 on the

single-chip cloud computer: porting and preliminary performance,” in

Proceedings of the 2011 ACM SIGPLAN X10 Workshop, ser. X10 ’11.

New York, NY, USA: ACM, 2011, pp. 7:1–7:8. [Online]. Available:

http://doi.acm.org/10.1145/2212736.2212743

http://dx.doi.org/10.1007/s10766-008-0073-6
http://dx.doi.org/10.1007/s10766-008-0073-6
http://doi.acm.org/10.1145/1454115.1454157
http://doi.acm.org/10.1145/1345206.1345229
http://doi.acm.org/10.1145/1188455.1188546
http://doi.acm.org/10.1145/2212736.2212743

BIBLIOGRAPHY 51

[10] S. Lankes, P. Reble, O. Sinnen, and C. Clauss, “Revisiting shared

virtual memory systems for non-coherent memory-coupled cores,” in

Proceedings of the 2012 International Workshop on Programming

Models and Applications for Multicores and Manycores, ser. PMAM

’12. New York, NY, USA: ACM, 2012, pp. 45–54. [Online]. Available:

http://doi.acm.org/10.1145/2141702.2141708

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on

Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[12] J. Talbot, R. M. Yoo, and C. Kozyrakis, “Phoenix++: modular

mapreduce for shared-memory systems,” in Proceedings of the second

international workshop on MapReduce and its applications, ser.

MapReduce ’11. New York, NY, USA: ACM, 2011, pp. 9–16. [Online].

Available: http://doi.acm.org/10.1145/1996092.1996095

[13] S. G. Kavadias, M. G. Katevenis, M. Zampetakis, and D. S.

Nikolopoulos, “On-chip communication and synchronization mechanisms

with cache-integrated network interfaces,” in Proceedings of the 7th

ACM international conference on Computing frontiers, ser. CF ’10.

New York, NY, USA: ACM, 2010, pp. 217–226. [Online]. Available:

http://doi.acm.org/10.1145/1787275.1787328

[14] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-

ins, H. Wilson, N. Borkar, G. Schrom, and et al., “A 48-core ia-32

message-passing processor with dvfs in 45nm cmos,” in Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE In-

ternational. IEEE, Feb. 2010, pp. 108–109.

[15] “The SCC Programmer’s Guide,” Revision 1.0.

http://doi.acm.org/10.1145/2141702.2141708
http://doi.acm.org/10.1145/1996092.1996095
http://doi.acm.org/10.1145/1787275.1787328

52 BIBLIOGRAPHY

[16] I. A. C. Ureña, M. Riepen, and M. Konow, “Rckmpi - lightweight

mpi implementation for intel’s single-chip cloud computer (scc),” in

Proceedings of the 18th European MPI Users’ Group conference on

Recent advances in the message passing interface, ser. EuroMPI’11.

Berlin, Heidelberg: Springer-Verlag, 2011, pp. 208–217. [Online].

Available: http://dl.acm.org/citation.cfm?id=2042476.2042500

[17] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng,

and K. Olukotun, “Map-Reduce for Machine Learning on Multicore,” in

NIPS’06: Proc. of the 20th International Conference on Neural Informa-

tion Processing Systems, Vancouver, Canada, Dec. 2006, pp. 281–288.

[18] J. Lin and C. Dyer, “Data-intensive text processing with mapreduce,”

in Proceedings of Human Language Technologies: The 2009 Annual

Conference of the North American Chapter of the Association for

Computational Linguistics, Companion Volume: Tutorial Abstracts,

ser. NAACL-Tutorials ’09. Stroudsburg, PA, USA: Association

for Computational Linguistics, 2009, pp. 1–2. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1620950.1620951

[19] J. Lin and M. Schatz, “Design patterns for efficient graph

algorithms in mapreduce,” in Proceedings of the Eighth Workshop

on Mining and Learning with Graphs, ser. MLG ’10. New

York, NY, USA: ACM, 2010, pp. 78–85. [Online]. Available:

http://doi.acm.org/10.1145/1830252.1830263

[20] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,

“Evaluating MapReduce for Multi-core and Multiprocessor Systems,” in

Proceedings of the 13th International Symposium on High Performance

Computer Architecture (HPCA), Feb. 2007, pp. 13–24.

http://dl.acm.org/citation.cfm?id=2042476.2042500
http://dl.acm.org/citation.cfm?id=1620950.1620951
http://doi.acm.org/10.1145/1830252.1830263

BIBLIOGRAPHY 53

[21] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth: Scalable

MapReduce on a Large-Scale Shared-Memory System,” in Proceedings of

the 2009 IEEE International Symposium on Workload Characterization

(IISWC), Oct. 2009, pp. 198–207.

[22] R. Chen, H. Chen, and B. Zang, “Tiled-MapReduce: Optimizing Re-

source Usages of Data-Parallel Applications on Multicore with Tiling,”

in Proceedings of the 19th International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT), Sep. 2010, pp. 523–534.

[23] M. de Krujif and K. Sankaralingam, “Mapreduce for the Cell B.E. Ar-

chitecture,” IBM Journal of Research and Development, vol. 53, no. 5,

Sep. 2009.

[24] A. Papagiannis and D. S. Nikolopoulos, “Rearchitecting mapreduce

for heterogeneous multicore processors with explicitly managed

memories,” in Proceedings of the 2010 39th International Conference

on Parallel Processing, ser. ICPP ’10. Washington, DC, USA:

IEEE Computer Society, 2010, pp. 121–130. [Online]. Available:

http://dx.doi.org/10.1109/ICPP.2010.21

[25] B. Catanzaro, N. Sundaram, and K. Keutzer, “A Map Reduce Frame-

work for Programming Graphics Processors,” in Proceedings of the Third

Workshop on Software and Tools for Multicore Systems (STMCS), Apr.

2008.

[26] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a

MapReduce Framework on Graphics Processors,” in Proceedings of the

17th International Conference on Parallel Architectures and Compila-

tion Techniques (PACT), Oct. 2008, pp. 260–269.

http://dx.doi.org/10.1109/ICPP.2010.21

54 BIBLIOGRAPHY

[27] W. Ma and G. Agrawal, “A Translation System for Enabling Data Min-

ing Applications on GPUs,” in Proceedings of the 23rd ACM Interna-

tional Conference on Supercomputing (ICS), Jun. 2009, pp. 400–409.

[28] “The Apache Software Foundation. Hadoop.” [Online]. Available:

http://hadoop.apache.org

[29] A. Verma, N. Zea, B. Cho, I. Gupta, and R. H. Campbell, “Breaking the

mapreduce stage barrier,” in CLUSTER. IEEE, 2010, pp. 235–244.

[30] Y. Mao, R. Morris, and M. F. Kaashoek, “Optimizing mapreduce for

multicore architectures,” Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, Tech. Rep, 2010.

[31] S. Rixner, Stream processor architecture. Norwell, MA, USA: Kluwer

Academic Publishers, 2002.

[32] M. Ekman and P. Stenstrom, “A robust main-memory compression

scheme,” in Proceedings of the 32nd annual international symposium

on Computer Architecture, ser. ISCA ’05. Washington, DC, USA:

IEEE Computer Society, 2005, pp. 74–85. [Online]. Available:

http://dx.doi.org/10.1109/ISCA.2005.6

[33] A. Papagiannis and D. S. Nikolopoulos, “Scalable Runtime Support for

Data-Intensive Applications on the Single-Chip Cloud Computer,” in

Proceedings of the 3rd Intel Many-core Applications Research Commu-

nity Symposium (MARC), Jul. 2011, pp. 25–30.

[34] P. M. McIlroy, K. Bostic, and M. D. Mcilroy, “Engineering Radix Sort,”

COMPUTING SYSTEMS, vol. 6, pp. 5–27, 1993.

http://hadoop.apache.org
http://dx.doi.org/10.1109/ISCA.2005.6

BIBLIOGRAPHY 55

[35] R. Thakur and R. Rabenseifner, “Optimization of Collective communica-

tion operations in MPICH,” International Journal of High Performance

Computing Applications, vol. 19, pp. 49–66, 2005.

[36] H. Shi and J. Schaeffer, “Parallel sorting by regular sampling,” J.

Parallel Distrib. Comput., vol. 14, no. 4, pp. 361–372, Apr. 1992.

[Online]. Available: http://dx.doi.org/10.1016/0743-7315(92)90075-X

[37] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable

synchronization on shared-memory multiprocessors,” ACM Trans.

Comput. Syst., vol. 9, no. 1, pp. 21–65, Feb. 1991. [Online]. Available:

http://doi.acm.org/10.1145/103727.103729

[38] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the

cilk-5 multithreaded language,” in Proceedings of the ACM SIGPLAN

1998 conference on Programming language design and implementation,

ser. PLDI ’98. New York, NY, USA: ACM, 1998, pp. 212–223.

[Online]. Available: http://doi.acm.org/10.1145/277650.277725

[39] J. D. McCalpin, “Memory bandwidth and machine balance in current

high performance computers,” IEEE Computer Society Technical Com-

mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.

1995.

[40] ——, “Stream: Sustainable memory bandwidth in high perfor-

mance computers,” University of Virginia, Charlottesville, Vir-

ginia, Tech. Rep., 1991-2007, a continually updated techni-

cal report. http://www.cs.virginia.edu/stream/. [Online]. Available:

http://www.cs.virginia.edu/stream/

http://dx.doi.org/10.1016/0743-7315(92)90075-X
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/277650.277725
http://www.cs.virginia.edu/stream/

56 BIBLIOGRAPHY

[41] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning,

J. Fryman, I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meis-

ter, A. K. Mishra, W. R. Pinfold, J. Teller, J. Torrellas, N. Vasilache,

G. Venkatesh, and J. Xu, “Runnemede: An Architecture for Ubuiq-

uitous High Performance Computing,” in Proc. of the 19th IEEE In-

ternational Symposium on High Performance Computer Architecture,

Shenzhen, China, Feb. 2013.

	Introduction
	Background
	Intel Single-Chip-Cloud-Computer (SCC)
	SCC Address Spaces
	SCC System Software

	The MapReduce Programming Model
	Programming Model
	MapReduce Runtime Systems

	DiMR Design and Implementation
	HyMR Design and Implementation
	HyMR Stages
	Scalable Custom Splitters
	Map
	Partition
	Reduce
	Sort

	MapReduce Optimizations
	Optimizing On-Chip Barriers
	Interrupt-less Work-Stealing

	Experimental Analysis
	Message-Passing vs. Hybrid-Adress-Spaces
	Scalability
	Sustained to Peak Bandwidth

	Related Work
	Conclusions

