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Abstract
With current technology trends for fast storage devices, the
host-level I/O path is emerging as a main bottleneck for
modern, data-intensive servers and applications. The need
to improve I/O performance requires customizing various
aspects of the I/O path, including the page cache and the
method to access the storage devices.
In this paper, we present Aquila, a library OS that al-

lows applications to reduce I/O overhead by customizing
the memory-mapped I/O (mmio) path for files or storage de-
vices. Compared to Linux mmap, Aquila (a) offers full mmio
compatibility and protection to minimize application mod-
ifications, (b) allows applications to customize the DRAM
I/O cache, its policies, and access to storage devices, and
(c) significantly reduces I/O overhead. Aquila achieves its
mmio compatibility, flexibility, and performance by placing
the application in a privileged domain, non-root ring 0.
We show the benefits of Aquila in two cases: (a) Using

mmio in key-value stores to reduce I/O overhead and (b)
utilizing mmio in graph processing applications to extend
the memory heap over fast storage devices. Aquila requires
2.58× fewer CPU cycles for cache management in RocksDB,
compared to user-space caching and read/write system calls
and results in 40% improvement in request throughput. Fi-
nally, we use Ligra, a graph processing framework, to show
the efficiency of Aquila in extending the memory heap over
fast storage devices. In this case, Aquila results in up to 4.14×
lower execution time compared to Linux mmap.

CCS Concepts: • Information systems→ Flashmemory;
Storage management; • Software and its engineering
→ File systems management; Memory management.
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1 Introduction
Fast storage devices provide high sequential throughput,
high random IOPS, and low access latency. For instance,
block-addressable NVMe devices attached to PCIe are typi-
cally capable of more than 500K random IOPS, with access
latency lower than 10 𝜇𝑠 [28]. Byte-addressable NVM de-
vices attached to memory DIMMs are already capable of 300
𝑛𝑠 access latency while providing 10𝑠 of GBs of throughput
[31]. Despite these technology trends, modern data-intensive
applications do not benefit proportionally: The I/O path is
becoming a significant bottleneck in terms of overhead (CPU
cycles) and scalability with the number of cores. Ideally, fu-
ture servers should consume as many CPU cycles as possible
for performing application processing rather than I/O. Today,
we are far from this ideal situation.

To improve I/O performance, data-intensive applications
resort to customizing the I/O path: Typically, I/O-intensive
applications use a user-space cache (Figure 1(b)) instead of
the system-wide kernel-space buffer cache (Figure 1(a)). The
former approach avoids frequent system calls to the kernel,
thus reducing I/O overhead. In addition, a user-space cache
allows for custom policies and can be combined with user-
space access to dedicated storage devices via libraries such
as SPDK [61] to eliminate the use of system calls and the
involvement of the kernel.
However, even in these cases, each data access requires

a lookup in the I/O cache for all operations, including hits.
Therefore, even in the case of hits, I/O cache lookups result in
high CPU overhead for cache management (in user or kernel
space). Harizopoulos et al. [24] claim that management of
a user-space cache consumes about one-third of the total
CPU cycles of a database system running OLTP workloads.
Papagiannis et al. [48] claim that about half of the total CPU
cycles are spent on cache management in RocksDB [20], a
widely used persistent key-value store.

https://doi.org/10.1145/3447786.3456242
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Figure 1. Storage cache configurations. Transitions to the kernel (dark/red color) require a protection domain switch.

Memory-mapped I/O through memory-mapped files or
devices, which we refer to as mmio for the rest of the paper,
has the potential to reduce I/O stack overheads over fast
storage devices by eliminating the cost of cache hits [1, 7, 11,
18, 27, 45, 47, 48, 51, 58]. I/O cache hits in mmio are handled
via virtual memory mappings and do not incur any software
overhead: The application maps a storage device (or a file)
in the process virtual address space and the user can access
it via processor load/store instructions. In the case of a hit, a
valid mapping in the page table already exists. The virtual
to physical translation is handled entirely in hardware.

However, mmio, as provided by Linux mmap, has several
shortcomings: (a) It uses a single, shared, kernel-level I/O
page cache that does not allow easy customization. (b) It
does not allow customizing I/O requests during misses and
evictions, as these are handled by the kernel. (c) It requires
expensive page faults in the case of misses (Figure 1(c)). Page
fault handlers modify virtual memory mappings in the page
table and fetch new data in memory. These shortcomings
render Linux mmap impractical for many applications that
could benefit from a custom mmio path.
Recent efforts to improve the mmio path have focused

on providing a custom path in the Linux kernel, such as DI-
MMAP [18] and FastMap [50], replacing mmap for specific
uses. However, customizing the mmio path in the Linux
kernel is not straight-forward, creates new limitations, is
not easy to deploy, and cannot satisfy diverse application
requirements. Moreover, even with a custom in-kernelmmio
path, performance can still suffer due to the high overhead
for I/O cache misses that require expensive page faults.
In this paper, we design and implement Aquila, a library

OS that allows applications to reduce software I/O overhead
by using a custom mmio path without the shortcomings of
mmap. Aquila offers applications an mmio interface compat-
ible with mmap which requires minimal changes. Applica-
tions are able to provide their own mmio handling, e.g., by
using a custom I/O page cache or device access method. In
addition, Aquila improves performance compared to mmap
by optimizing mmio operations in the common path. Aquila
is collocated with the application in a privileged execution
domain (non-root ring 0) along with common-path mmio

functionality, while still offering full mmio functionality by
interacting with the hypervisor (Figure 1(d)). Essentially,
Aquila runs the application as a guest OS and provides full
protection semantics by leveraging hardware support for
virtualization [4, 62].

In our work, we first observe that although I/O cache
hits are free with mmio, misses are expensive and trigger
five main operations (Figure 1(c)): 1 Handle page-faults; 2
perform DRAM I/O cache replacements, including evictions
and write-backs; and 3 access the I/O device. Additionally,
mmio needs to 4 create or destroy file mappings (i.e. mmap
and munmap), and 5 dynamically resize the DRAM cache.
Then, we observe that these operations occur with differ-
ent frequencies: 1 – 3 are common path operations while
4 – 5 are less frequent, but are still required for full mmio
functionality.

Based on these observations, Aquila places common-path
operations, 1 – 3 (page faults, I/O cache replacements, de-
vice access) and the application in the same context, non-root
ring 0 to allow both for customization of the common mmio
path and to reduce overhead without compromising protec-
tion. At the same time, Aquila provides operations 4 – 5
(coarse-grain memory allocation and file mapping manage-
ment) by interacting with the hypervisor, allowing for the
full mmio functionality and minimizing the required modifi-
cations to application code, without incurring a significant
performance penalty.

Overall, the contributions of this paper are:
1. We design and implement a new approach, based on

mmio, which, similar to user-space I/O caches, enables
customization of the I/O path (page cache structure,
mechanisms, policies, device access) while, similar to
mmio, it eliminates the cost for cache hits.

2. We provide this flexibility at low overhead, by placing
common path operations in non-root ring 0 and only
requiring interaction with the hypervisor for uncom-
mon path operations.

3. As opposed to Linux mmap that is used mainly for
shared library and executable management, we pro-
vide a scalable I/O page cache tailored for I/O-intensive
applications.
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4. We provide direct access to storage devices from non-
root ring 0 using SPDK and remove the need for ex-
pensive syscall/vmcall operations in our customizable
mmio path.

5. We offer compatibility with Linux mmap, allowing its
use in different cases. We show the effectiveness of our
approach in two scenarios: (i) storage I/O in key-value
stores that are broadly used today and (ii) extending
the application heap over fast storage devices for han-
dling large datasets.

We implement Aquila in Linux and evaluate its efficiency
with micro-benchmarks and real applications. For RocksDB
[20], Aquila requires 2.58× fewer CPU cycles for cache man-
agement compared to user-space caching and read/write sys-
tem calls, and results in up to 40% higher throughput. Aquila
reduces the average page fault latency by 45.3% compared to
Linuxmmio. We show that Aquila achieves both low average
and tail latency, while maintaining high device throughput.
We also examine the use of mmio for extending the heap
of Ligra [57], a graph-processing, data-intensive application
over fast storage devices. Aquila reduces execution time up
to 4.14× compared to mmap, with minimal modifications to
the application, and only during initialization.

2 Background
In this sectionwe provide a brief summary of Linuxmmio [42]
and Intel VT-x [62] virtualization extensions.

2.1 Linux mmap
The Linux kernelmmap system call creates new virtual mem-
orymappings to physical memory for a specific process. Map-
pings can be either anonymous or backed by files. Anony-
mous mappings are private to each process and are mainly
used for user, heap-based memory allocation, i.e. malloc. In
this paper we examine I/O over persistent storage, an inher-
ently shared resource. Therefore, we consider only shared
memory mappings backed by a file or block device, as also
required by Linux mmio.

File-backed mappings can be either private to each process
or shared among processes. Private file mappings are used
to load executables and shared libraries. These are typically
mapped with read-execute permissions in the text segment
and include portions mapped with read-write permissions
in the data segment. Any modification to the data segment
must not reach the underlying file. For this reason, these are
Copy-On-Write mappings. On the other hand, shared file
mappings persist after a process exits or a failure occurs, and
therefore, are appropriate for storage purposes. In this paper
we target only shared file-backed mappings.

2.2 Intel VT-x CPU Virtualization
Intel VT-x is a set of processor hardware extensions to ac-
celerate the operation of hypervisors. The x86_64 CPU has

two major operating modes, VMX root and VMX non-root.
VMX root is similar to privileged non-virtualized CPU oper-
ation; the hypervisor and the host OS typically run in this
mode. VMX non-root mode is used to run the guest operating
system. In this mode, CPUs have protection limitations for
privileged instructions. Both VMX root and VMX non-root
support a separate set of protection rings, where ring 0 is the
most privileged and ring 3 is the least privileged. Commonly,
the operating system (host and guest) runs in ring 0 and user
applications run in ring 3. Ring 1 and ring 2 are not used
in modern operating systems. Figure 2 shows the different
CPU modes and rings.

Executing vmlaunch or vmresume CPU instructions from
VMX root changes the mode to VMX non-root, and starts
or continues to execute guest OS code. This transition is
named vmentry. The hypervisor handles privileged instruc-
tions after a transition from VMX non-root to VMX root
mode. This transition is named vmexit. vmexits occur upon
events predefined by the hypervisor. These events and sev-
eral other configuration options are stored in the per-CPU
VM Control Structure (VMCS) memory buffer. Besides the
predefined events (privileged instructions), the guest can
generate a vmexit explicitly by issuing a vmcall instruction.
For both vmentry and vmexit events, processor hardware
handles the steps for saving and restoring architectural state
to/from VMCS.
An important aspect of Intel VT-x [62] is the use of Ex-

tended Page Tables (EPTs) which accelerate address transla-
tion, as follows. When the guest is executing, there are two
levels of address translations: (i) From Guest Virtual Address
(GVA) to Guest Physical Address (GPA), using regular page
tables without requiring a vmexit; (ii) From Guest Physical
Address (GPA) to Host Physical Address (HPA) requiring a
vmexit. EPTs accelerate this second step under the control
of the hypervisor. During the access of a GPA, if the transla-
tion does not exist, an EPT-fault occurs and the hypervisor
handles the fault in a way similar to regular page faults.

3 Aquila Design
Aquila provides a fast, customizable I/O path by collocat-
ing I/O functionality and the application in non-root ring 0
(Figure 2). To provide fast access to data, Aquila uses mmio
which eliminates the cost of hits to the I/O cache and handles
page faults that are necessary for misses in non-root ring 0
( 1 ). To allow for customization (mechanisms and policies),
Aquila places the I/O page cache in non-root ring 0 ( 2 ), and
allows for different methods to access storage devices ( 3 )
from non-root ring 0. Finally, to provide the full mmio func-
tionality, Aquila offers management of file mappings ( 4 )
and the ability to resize the I/O cache ( 5 ). Although these
operations require interaction with the hypervisor, they do
not affect performance as they occur less frequently. Fig-
ure 2(right) shows where Aquila places the application, as
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Figure 2. Protection rings and operation path in Linux (left)
and Aquila (right).

Figure 3. Page tables, device I/O, DRAM cache, and DRAM
allocation in Aquila.

opposed to common Linux applications (Figure 2(left)). Next,
we discuss each of these operations in more detail.

3.1 Handling Page-Faults for I/O Cache Misses
I/O cache misses in mmio require expensive page faults in
the kernel, due to protection domain switching to update
protected resources, such as the page tables and TLB. Page
faults in mmio are required to modify virtual to physical
memory mappings. Essentially, these mappings allow mmio
to eliminate the cost for I/O cache hits. Aquila collocates
the application and the DRAM cache in non-root ring 0, in
order to allow customization of the mmio path, as well as
to reduce the cost of page faults. However, handling page
faults in non-root ring 0 introduces significant challenges.
We continue with the presentation of our design, and discuss
implementation challenges in more detail in Section 4.

Figure 4. DRAM cache organization in Aquila.

Page faults are handled via a page table, as specified by
the underlying architecture and OS. Aquila uses a shared
page table for all threads of each process to store these mem-
ory mappings, similar to modern OSes. Figure 3 shows that
Aquila’s page table resides in non-root ring 0 and translates
application virtual addresses to DRAM cache pages. With
Intel VT-x [62] there are two levels of virtual to physical
address translation. First, in VMX non-root mode, a regu-
lar page table translates from Guest Virtual Address (GVA)
to Guest Physical Address (GPA). In VMX root mode, an
Extended Page Table (EPT) translates from Guest Physical
Address (GPA) to Host Physical Address (HPA). Aquilamaps
GVA addresses to GPA addresses.

Today, page faults switch from ring 3 to ring 0 as follows.
For user applications, page fault exceptions occur in ring
3. The page fault initiates a protection domain switch to
ring 0, changes the stack, and stores state information about
the process exception in the kernel stack. Then, execution
branches to the appropriate fault handler. Upon page fault
completion, control returns to the user-space code in ring 3
via the iret instruction.

In Aquila, the application already runs in ring 0 using
virtualization support. Page fault exceptions occur in ring 0
and a protection domain switch is not required. Execution
branches directly to the appropriate fault handler. Upon page
fault completion, control returns to the application without
the need for a transition from ring 0 to ring 3. Handling
page faults in non-root ring 0 requires dealing with TLB
invalidations and handling exception handler execution. We
discuss these two aspects in more detail in Section 4.

3.2 DRAM Cache Design
ADRAM cache is necessary for hosting data fetched from I/O
devices. FastMap [50] has shown that the Linux kernel buffer
cache used by mmap does not scale well with increasing the
number of application threads. Therefore, Aquila aims to
reduce contention and improve DRAM cache scalability. The
main observation of FastMap [50] is that, unlike Linux, dirty
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pages need to be maintained in a separate structure from
clean pages. Figure 4 shows the organization of the DRAM
cache inAquila, with the following structures and operations
that target specifically the caching functionality required by
mmio.

Cache lookups: Cache lookups are an important compo-
nent of the mmio path. Mmio eliminates the software cost
for cache lookups in the case where a page resides in the
cache. In the case of a page fault, the handler first checks
if the requested page is in the DRAM cache. Although this
is a page fault, it may occur that upon checking the DRAM
cache as part of the page fault handling routine, the page
has been brought in the cache. For this reason, the handler
uses a lock-free hash table to perform a fast lookup, similar
David et al. [16]. If the requested page resides in the DRAM
cache, Aquila creates a mapping to the page table between
the faulting virtual address and the physical page. If the page
is not present in the cache, it (1) allocates new cache pages
from the freelist, (2) evicts pages from the cache, (3) cleans
dirty pages, and (4) issues write/read I/O to the underlying
device, as follows.

Freelist and evictions: Aquila uses a hierarchical 2-level
freelist to manage DRAM cache pages, as follows. The first
level consists of a queue per NUMA node, while the second
level of a queue per core. When a page is required, the core
checks, in order, its local (core) queue, the local NUMA node
queue, and the remote NUMA node queues. All queues con-
tain free pages. If all queues are empty, Aquila tries to evict a
batch of pages (512) synchronously. We choose which pages
to evict via an approximation of LRU. Aquila updates the
LRU list based on page faults. When a page is evicted from
the cache, it is placed in the local core queue. If the number
of pages in the local core queue exceeds a threshold, they
are moved to the appropriate NUMA queue. All page move-
ment between first and second level queues is performed
in batches (4096 pages in our evaluation). By implementing
lock-free freelist queues and using batching in our two-level
allocator, we do not observe high contention.

Dirty page write-back: Aquila maintains dirty pages in
a data structure separate from the hash table to accelerate
writeback and msync operations. We track dirty pages via
page faults similar to FastMap [50]. In the case of a read fault,
we map a page as read-only. A write on this page results
in an additional page fault where we only mark the page
as dirty. In the case of a write fault we also mark the page
as dirty during the initial page fault. Dirty pages need to
be sorted by device offset and this is not facilitated by our
hash table. For this reason, and to reduce contention on a
single lock, we use per-core red-black trees. When a page is
selected for replacement, we write pages to the device in the
order defined by their page offsets. Having multiple sorted
red-black trees simplifies merging of pages in larger I/Os for

writebacks similar to the Linux kernel [42]. For reads, we
require synchronous I/Os and cannot apply any batching.
Based on the possibly supplied madvise arguments we also
perform read-ahead to improve sequential reads.

3.3 Device I/O
Device I/O typically requires kernel involvement and incurs
high overheads. A user-space storage cache requires expen-
sive system calls. In Linux mmio, as a page fault requires
a trap to the kernel, the I/O does not require an additional
protection domain switch. However, since Aquila moves the
application into non-root ring 0, serving I/Os in the kernel
(root ring 0) could require a vmcall, which is even more ex-
pensive compared to system calls. Aquila removes the need
for an additional protection domain switch with direct access
to storage devices from non-root ring 0. Aquila allows user
applications to customize device I/O based on their perfor-
mance and flexibility. This spans from a common file system
with strict POSIX semantics to user-space optimized frame-
works. This section provides details on using direct access
to fast block-addressable and byte-addressable devices, and
specific optimizations for each case.

Figure 3 shows the I/O path in Aquila and how it provides
direct access to storage devices. Next, we discuss how Aquila
achieves this for both block-addressable storage devices, such
as PCIe-based (NVMe), and for byte-addressable, DIMM-
based, non-volatile memories (NVM).

Direct access to NVMe: We use SPDK [61], a broadly-
used user-space framework to access NVMe devices. Aquila
provides a system call interception and file abstraction over
SPDK and applications can run with minimal changes. Using
SPDK, Aquila bypasses the host OS and issues I/O operations
directly to devices (Figure 3(a – right)). Direct access requires
that the devices are not shared with other processes and also
that they are visible directly from Aquila at non-root ring 0.
This is the case, e.g., with modern NVMe devices attached to
PCIe, because device configuration registers can be mapped
directly to user space.
To provide applications with a file abstraction, we lever-

age Blobstore [60]. Blobstore provides a flat namespace of
blobs, where each blob, identified by a unique number, can
be created/resized/deleted at runtime, and also supports ex-
tended attributes. Aquila supports the translation from files
to blobs transparently. For this purpose, we intercept open
andmmap calls in non-root ring 0. Aquila uses the direct I/O
path of Blobstore, which does not buffer data, as opposed to
BlobFS [59], which buffers data in its local DRAM cache.

Direct device access requires dedicated devices for protec-
tion purposes. This can also take the form of dedicated device
partitions. Today, such an approach is common for systems
such as key-value stores and data processing frameworks
that fully manage their storage and data on their own.
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Direct access to NVM:. Byte-addressable, NVM devices
can be accessed through processor load/store instructions.
When using NVM as a storage device, it can be either mapped
directly to the program address space or used as a backing
device for a DRAM I/O cache. The two approaches have
different tradeoffs for access latency and throughput [31].
Aquila targets setups that provide DRAM caching over byte-
addressable NVM devices. Aquila maps NVM in the appli-
cation address space in non-root ring 0 and uses the Direct
Access (DAX) framework for device access purposes (Fig-
ure 3(a – left)). For I/O we use memory copy (memcpy) be-
tween DAX-mmaped files and our DRAM cache. We provide
protected sharing of NVM between different processes and
forward all metadata operations to the host OS.
Aquila uses an effective optimization for memory copies

that transfer data between DRAM and NVM, as follows.
Memory copies for reads have a size of 4𝐾𝐵, equal to the
page size. The Linux kernel cannot use SIMD instructions
for memcpy because this requires a full FPU state save and
restore, which is extremely costly. For SSE it has to save 512
bytes and for AVX 832 bytes. We measure the cost to save
and restore AVX state using the XSAVEOPT and FXRSTOR in-
structions to be around 300 cycles. Furthermore, we measure
the cost of a 4𝐾𝐵 memcpy, without using SIMD instructions
to be about about 2400 cycles. Instead, an optimized memcpy
of 4𝐾𝐵 using AVX2 streaming (i.e. processor cache bypass)
instructions requires about 900 cycles. With the cost of save
and restore FPU state this increases to 1200 cycles, i.e. 2×
faster than non-SIMD memcpy. For these reasons Aquila
uses an AVX2 optimized memcpy and pays the cost of saving
and restoring FPU state only in the case of page faults that
require a memory copy.
Finally, Aquila can use other approaches for I/O as well.

These include the common synchronous read/write system
calls and asynchronous approaches, such as libaio or io_uring
[32] (Figure 3). All these strike a different balance between
sharing and performance. We leave the evaluation of differ-
ent configurations for future work.

3.4 File-mapping Management
Virtual address range update operations, such as mmap,
munmap, and mremap are used to create, destroy, expand,
or shrink mappings to files or devices. These operations
happen less frequently. Virtual address lookups happen fre-
quently in the common path (operation 1 ), because every
page fault checks if the faulting address refers to a valid,
properly mapped, virtual address. Therefore, the challenge
in Aquila is to perform virtual address range updates using
root ring 0, while supporting efficient lookups in non-root
ring 0. We should handle virtual address range updates in
Aquila without interacting with the host OS, except from
virtual memory operations not related to file mappings.

Linux, uses a red-black tree to keep all active Virtual Mem-
ory Areas (VMA), protected by a read-write lock. Operations

that modify address ranges (mmap, munmap, and mremap),
need to acquire this as a write lock, while page faults acquire
it as read lock. Other work [8, 12, 13] has shown that this
lock can limit scalability in servers with a large number of
cores, even in cases where it is acquired as a read lock.

For this reason,Aquila uses a radix tree, similar to RadixVM
[13], instead of a balanced tree to avoid contention and pro-
vide scalable manipulation and access of virtual address
ranges. In the case of page faults, the radix tree is used for
two purposes: (1) check if the page fault occurred in a valid
address and (2) lock the specific entry to avoid concurrent
modifications for the same page.

RadixVM uses per-core page tables in order to keep meta-
data about which TLB contains specific mappings and en-
able targeted TLB invalidations. RadixVM targets anony-
mous mappings where the design tradeoffs are different. We
choose to have a single page table shared by all cores, similar
to what common OSes do. This approach reduces the number
of total page faults and as we use a batched TLB shootdown
approach it does not negatively affect the performance.
Finally, we do not use the RadixVM refcache mechanism

for page reference counting. We provide explicit page man-
agement as described in the previous section. In the cases
where reference counting is required (i.e. radix tree meta-
data), we use a single shared reference count which does not
incur significant overhead, as it is not in the common path.

3.5 Dynamic Cache Resizing
Aquila provides the ability to resize its DRAM cache dynam-
ically, similar to the Linux page cache. This occurs less fre-
quently, compared to other operations during mmio. There-
fore, its cost is of secondary importance.
Figure 3 shows this path. The host operating system is

responsible to allocate additional DRAM to Aquila and re-
claim it, when needed. Aquila uses a set of ranges in Guest
Physical Addresses (GPAs) for its DRAM cache. An Extended
Page Table (EPT) translates GPA to to Host Physical Address
(HPA). Accesses to a GPA, where an EPT mapping does not
exist, result in an EPT fault in the host OS. This is simi-
lar to common page faults but has higher cost due to the
required vmexit. Similar to Dune [4], during an EPT fault
Aquila checks the normal page table to determine if the ac-
cess is valid and then adds the translation to the EPT. Aquila
reduces the number of EPT faults with huge pages only for
GPA to HPA translations. We support both 2𝑀𝐵 and 1𝐺𝐵
pages; in our evaluation we only use 1𝐺𝐵 pages for cache
resizing purposes. Allocating cache in multiples of 1𝐺𝐵 does
not result in any DRAM utilization issues. Aquila can also
support both 2𝑀𝐵 and 1𝐺𝐵 pages in other cases. For GVA to
GPA translations we use only regular 4𝐾𝐵 pages to provide
fine grain accesses to the application.

In Aquila, similar to common OSes, all threads of a process
share the same page table; therefore we use a single EPT per
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process.Aquilamodifies EPT management in Dune to replace
its single EPT per thread with a single EPT per process.

4 Aquila Implementation
Aquila uses Dune [4] to access and configure Intel VT-x ex-
tensions. Dune uses hardware virtualization extensions and
provides direct and protected access to hardware features,
such as rings, page tables, and tagged TLBs.
Aquila consists of about 20𝐾 lines of both C and C++

source code, excluding third-party libraries. This code han-
dles virtual address range management, DRAM caching, in-
cluding the dedicated page allocator, dirty page management,
LRU eviction, and I/O to and from devices. It also handles
page faults and intercepts system calls. We are able to run
user applications, such as RocksDB, with minimal changes.
These changes are a single function call where Aquila initial-
izes its context during the application startup (i.e. in main
function) and a single function call for each new thread to
switch it over to the Aquila mode.

4.1 Batched TLB invalidations
Section 3.1 provides details on how Aquila adds new trans-
lations in the page table during page faults. An additional
important operation is the modification and removal of map-
pings. This is required in the case of page evictions or when
updating protection flags in existing mappings (i.e. mpro-
tect). These operations require a TLB invalidation. In x86_64,
each CPU can only invalidate its local TLB. x86_64 provides
Inter-Processor Interrupts (IPIs) so the OS can notify other
cores to invalidate their TLB (aka TLB shootdown). Other
work [2, 3] has shown that for anonymous mappings this can
limit scalability with high core counts. An optimized mmio
path for shared mappings has also shown similar scalability
issues [50] for TLB shootdowns. Handling TLB shootdowns
in VMX non-root ring 0 introduces challenges for both cor-
rectness and performance. To reduce this cost, Aquila uses
a batched TLB shootdown approach. We remove the map-
pings for multiple pages (512 in our evaluation) and send
a single TLB invalidation for all pages. We use posted IPIs
as provided by hardware virtualization extensions, together
with a mechanism similar to Shinjuku [33]. Shinjuku sends
and receives IPIs without the need of a vmexit, by mapping
the Advanced Programmable Interrupt Controller (APIC)
directly to the user.
An additional problem to address in Aquila, as it targets

unmodified user applications, is the case where a malicious
process performs a denial-of-service attack by issuing a large
number of interrupts to a specific core. To address this, we
choose to use a vmexit in the send path by writing to aModel-
Specific Register (MSR) register. A vmexit transfers control
to a protected domain (i.e. hypervisor), where we can limit
the rate of interrupts and avoid a denial-of-service attack.
Requiring a vmexit on the send path results in increasing the

cost from 298 to 2081 cycles [33]. However, due to batching
this cost is amortized over the entire batch and we show in
our evaluation that this is negligible compared to other costs
(Figure 8(b)). Finally, similar to Shinjuku, Aquila uses the
vmexit-less receive path.

4.2 Exception stack management
Aquila uses two exception handlers: one for page faults and
one for Inter-Processor Interrupts (IPIs). Using the same
stack for both user data and exception handling in Aquila
(non-root ring 0) can cause corruption due to the red zone
compiler optimization.
The red zone is a fixed-size area in each function stack

frame, beyond the current stack pointer. A function may use
the red zone to store local variables without the additional
overhead of modifying the stack pointer. The x86-64 ABI
uses a 128-byte red zone, starting directly under the stack
pointer. Corruption may occur when an interrupt/exception
is triggered and the user code is using the red zone: The
handler will overwrite the red zone and will corrupt user
data. For this reason, OS code is compiled with the red zone
disabled to avoid this type of data corruption. In addition,
Linux currently uses a separate stack for exceptions that can
occur while applications are executing, these being: Double
Fault Exceptions, non-maskable interrupts, hardware debug
interrupts, and Machine Check Exceptions. In x86_64 there
can be up to seven alternative stacks.
Aquila uses two additional stacks for its two handlers.

Aquila handlers run with interrupts enabled, because e.g., in
memory-mapped I/O a page fault can lead to an I/O opera-
tion, which can take several thousands of cycles to complete.
Delaying IPIs during a prolonged interval would negatively
affect the performance of other threads. For this reason, sim-
ilar to Linux, in both Aquila handlers, we start by disabling
interrupts, then allocate the exception frame on an alterna-
tive stack, and avoid the red zone. Afterwards, we copy the
exception frame back to the stack of the currently running
application function and re-enable interrupts.
A simple solution that requires recompiling the applica-

tion and all libraries, including the standard C library (libc),
is to disable at compile time the red zone optimization. How-
ever, this is not practical, as we want to minimize application
modifications. To overcome this limitation we use an x86_64
feature which provides the ability to change the stack in
hardware when an interrupt/exception occurs.

4.3 Dependence on architecture and OS
Memory-mapped files are supported onmost commonly used
OSes. OSes based on Linux and BSD support mmap system
calls, while Windows provide similar functionality with the
MapViewOfFile system call. Aquila is not tightly coupled
to a specific CPU architecture, OS, or hypervisor: We use
x86_64 to make our case; however, other architectures, such
as ARM [63], Intel Itanium [30], and IBM Power [26] provide
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hardware-assisted virtualization. Finally,Aquila can leverage
nested virtualization [6] that modern hypervisors [41, 44, 64,
66] provide to run within a virtual machine.

4.4 System Call Interception
Similar to Dune, Aquila implements a subset of the guest
operating system’s system calls and redirects the rest to the
host operating system, using vmcall. This requires a custom
handler for system calls in MSR_LSTAR, which contains the
address of the system call handler. We modify Dune to also
enable system call interception in ring 0. Then, we intercept
all virtual memory related system calls, specifically mmap,
munmap, mremap, madvise, mprotect and msync. These calls
are handled inAquila and do not result in a vmcall. Therefore,
they incur the overhead of a regular function call, as they do
not trigger a protection domain switch.

We acknowledge that systems which run applications in a
privileged domain, similar to where a guest OS runs in virtual
machines incur increased costs for system calls that have to
go into the host OS [4]. In our case, we assume that applica-
tions using Aquila leverage memory-mapped files/devices to
interact with storage (rather than system calls) and that they
use RDMA for networking. Therefore, system calls are not
in the common path. Common networking-related system
calls if used, will incur increased latency in Aquila: a vmexit
adds about 750 cycles (250 ns) [4], which is relatively small
compared to other network path costs. Furthermore, Aquila
can be combined with techniques from IX [5], ZygOS [55],
and Shinjuku [33] to enable fast vmexit-less networking.

4.5 Security implications
Aquila provides a similar security model to a guest virtual
machine running on a host operating system.

5 Experimental Methodology
Our testbed consists of a dual-socket server equipped with
two Intel(R) Xeon(R) E5-2630 v3 CPUs running at 2.4 GHz,
each with 8 physical cores and 16 hyperthreads, for a total of
32 hyperthreads. The storage device used in our experiments
is a PCIe-attached Intel Optane SSD DC P4800X [28] with
a capacity of 375 GBs. The server is equipped with 256 GB
of DDR4 DRAM at 2400 MHz and runs CentOS v7.3, with
Linux kernel 4.14.72.
During our evaluation we limit the available capacity of

DRAM (using cgroups [35]) as required by different experi-
ments. To reduce variability in our experiments, we disable
swap and Transparent Huge Pages (THP), and set the CPU
scaling governor to performance. In experiments where we
want to stress the software path of the Linux kernel we also
use a pmem [54] block device. This emulates a fast byte-
addressable (NVM) block device backed by DRAM.

In our evaluation we first use a custom multithreaded mi-
crobenchmark. It uses a configurable number of threads that

Table 1. Standard YCSB Workloads.

Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

issue load/store instructions at randomly generated offsets
within the memory mapped region. We ensure that each
load/store results in a page fault.

Next, we use RocksDB [20] (v6.8.0), a persistent key-value
store developed by Facebook and widely used in produc-
tion systems. It is based on LSM-trees [46], with each level
organized in fixed-size files (64𝑀𝐵 by default), named Static-
Sorted-Tables (SSTs). SSTs are placed in the mount point
specified by the user and are organized in a flat namespace.
RocksDB provides different ways to read and write data from
files: direct I/O with a user-space cache, buffered read/write
in the Linux kernel, and mmio. The recommended mode
of operation is to use explicit read/write calls, in direct I/O
mode, combined with a user-space cache [9].

Then, we use Kreon [48, 49], a persistent key-value store
designed from the ground-up to use mmio in the common
path. Kreon is based on LSM-trees [46] but instead of SSTs
uses a log to store all keys and values and a B-Tree index per
level for indexing. This approach increases random accesses
to devices but reduces I/O amplification and CPU cycles in
the common path. Kreon provides a custommmio path in the
Linux kernel, named kmmap, and places its data in a single
file/device, using a custom allocator for space management.
We have ported RocksDB and Kreon to Aquila with mi-

nor changes to their initialization code. We experiment with
the original YCSB workloads [15] using a C++ implementa-
tion of YCSB [56] to eliminate high JNI overheads. Table 1
summarizes the YCSB workloads we use.
Furthermore, we use Ligra [57], a lightweight graph pro-

cessing framework for shared memory with OpenMP-based
parallelization. We run the Breadth First Search (BFS) al-
gorithm to evaluate Aquila’s effectiveness in extending the
virtual address space beyond physical memory over fast stor-
age devices. For this purpose, we convert allmalloc/free calls
of Ligra to allocate space over a memory-mapped file on a
fast storage device. Ligra uses OpenMP for parallelization,
which shows that Aquila can be integrated with real-life,
complex runtime systems.
We run all experiments three times and report averages

across runs. The variation we observe across runs in our
experiments is negligible.
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Figure 5. Aquila compared to mmap and read/write for RocksDB, with (a) a dataset that fits in memory, and (b) a dataset that
does not fit in memory.

6 Experimental Analysis
In this section, we evaluate experimentally:

1. Aquila custom mmio vs. explicit read/write I/O calls.
2. Extending the application heap with Aquila.
3. Reducing the I/O cache overhead with Aquila.
4. Reduced overhead of Aquila vs. Linux mmap.
5. Improved scalability of Aquila vs. Linux mmap.

Next, we discuss our results.

6.1 Aquila custommmio vs. explicit read/write I/O
In this section we examine how Aquila compares to Linux
explicit I/O in terms of throughput. For this purpose, we
use RocksDB, which has been designed to perform explicit
I/O to storage devices. RocksDB also provides an option to
use mmio when reading data from SSTs. The developers of
RocksDB suggest [22] that using mmap for an in-memory
database with a read-intensive workload increases perfor-
mance. They also suggest [21] that mmap sometimes causes
problems when data does not fit in memory and is managed
by a file system over a block device.
We compare RocksDB with explicit I/O (direct I/O and a

user-space cache of 8𝐺𝐵), RocksDB with Linux mmap (8𝐺𝐵
page cache limited with cgroups), and RocksDB with Aquila
(8𝐺𝐵 DRAM cache). We use YCSB with workload C (100%
random reads), with 1𝐾𝐵 sized values, 30𝐵 sized keys, and the
uniform YCSB distribution. We use a dataset of 8𝑀 records
(8𝐺𝐵) that fits in the cache and a dataset of 32𝑀 records
(32𝐺𝐵), which is 4× larger than the cache size.

Figure 5(a) shows the results for this experiment using
both NVMe and pmem devices, with a dataset that fits in the
cache.We see that similar to what the developers of RocksDB
suggest, mmap is faster than read/write calls. In this case
Aquila is up to 1.15× faster compared to Linux mmap.

Figure 5(b) shows our results for a dataset that does not fit
in the cache, both for NVMe and pmem. We see that Linux
mmap performs poorly compared to read/write I/O. Themain
reason is that mmap prefetches 128𝐾𝐵 for 1𝐾𝐵 reads.

The pmem device shows the potential of Aquila as storage
devices become faster. In this case, Aquila results in higher
RocksDB throughput by 1.18× for 1 thread and by 1.65×
for 32 threads. With the NVMe device, Aquila and direct
I/O have similar performance (between 0.96× up to 1.06×)
because throughput is limited by the device itself. Therefore,
Aquila is able to improve upon explicit I/O performance,
even for large reads, a case where explicit I/O performs best.

In all previous casesAquila provides better average and tail
latency. Using the dataset that fits in cache, Aquila achieves
from 1.28× to 1.39× lower average latency compared to direct
I/O and from 1.09× to 1.27× compared to mmap with the
NVMe device. With pmem, improvements are between 1.06×
and 1.21× for average latency and between 1.01× and 1.15×
for tail latency.

Using the dataset that does not fit in the cache, we compare
Aquila mmio with Linux direct I/O, excluding Linux mmap
as it performs poorly. For the NVMe device, average latency
improves similarly to the in-memory dataset, between 0.98×
and 1.12×. However, for pmem, Aquila achieves even lower
average latency compared to the out-of-memory dataset,
between 1.24× and 1.28×.

We notice larger improvements in all cases for tail (p99.9)
latency. For in-memory datasets,Aquila achieves 3.88× lower
tail latency on average compared to Linux explicit I/O. For
out-of-memory datasets, Aquila achieves 1.26× lower tail
latency on average.
Finally, we do not provide an evaluation of write opera-

tions in RocksDB, generated by compactions. Compactions
(and writes) in RocksDB take place in background threads
and they are optimized to issue large (1-2MB) I/O requests.
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In this case the only bottleneck is the device itself, rather
than the software stack.

6.2 Extending the application heap with Aquila
We evaluate Aquila for extending the virtual address space of
an application beyond DRAM and over fast storage devices.
Using mmap (and Aquila) a user can easily map a file over
fast storage and provide an extended address space, limited
only by device capacity. Although this is not practical today
because of mmio overhead, it is a straightforward manner to
allow for large datasets in applications, without modifying
them to handle I/O.
Ligra is a demanding workload in terms of memory ac-

cesses and commonly operates on large datasets. Ligra as-
sumes that the dataset (and metadata) fit in main memory.
For our evaluation we generate a R-Mat [10] graph of 100M
vertices, with the number of directed edges is set to 10×
the number of vertices. We run BFS on the resulting 18GB
graph, thus generating a read-mostly random I/O pattern.
Ligra requires about 64GB of DRAM throughout execution.
To evaluate Aquila against Linuxmmap, we run experiments
where we limit the main memory in our server to 8GB and
16GB, and use both a pmem and a NVMe device.

Figure 6(a) shows our results with 8GB of DRAM cache.
First, we notice that mmap with a pmem device results in a
substantial slowdown, up to 11.8× compared to in-memory
execution. This gap in performance leads applications to
handle large datasets that do not fit in memory by extensive
application re-design to perform I/O. Aquila allows Ligra
to use large datasets with few modifications, while signifi-
cantly improving the performance over mmap. We observe
that for BFS with 1 thread, Aquila is 1.56× faster compared
to mmap (33.6s vs 52.5s). At 8 threads, Aquila is 2.54× faster
compared to mmap (8.4s vs 21.4s). At 16 threads, the differ-
ence is significantly higher, 4.14× (6.74s vs. 27.9s), due to the
better scalability of the custom Aquila I/O cache. Figure 6(b)
shows our results with 16GB of DRAM cache. Compared to
8GB of DRAM cache, absolute performance improves due
to reduced cache misses. However, even in this case Aquila
results in similar benefits compared to mmap (up to 2.3×
with 16 threads). As a reference point, we also include mea-
surements from in-memory experiments with Ligra. Aquila
closes the gap of mmio compared to in-memory execution
from 5× to 3.23× slower at 1 thread, from 6.4× to 2.5× slower
at 8 threads, and from 11.8× to 2.8× slower at 16 threads.
We also see similar benefits with a real NVMe device both in
terms of scalability and actual execution time.
Figure 6(c) shows the breakdown of execution time with

8GB and 16 threads.With a pmem device, these benefits come
from the reduced system time from 61.79% with mmap to
43.82%withAquila. This leavesmore CPU time for user space
processing (55.92% in Aquila vs. 10.61% in mmap). Aquila
also reduces the idle time. We see similar improvements with
the NVMe device.

This breakdown shows that mmap is not efficient in ex-
tending the application heap over fast storage devices.mmap
incurs several inefficiencies that result in increased system
and idle time for cachemanagement, device I/O, and handling
page faults. mmap results in a 11.8× slowdown compared to
using only DRAM, which is a significant penalty for extend-
ing the virtual memory of a user application. Aquila reduces
system and idle time by 8.31×, resulting in significantly lower
slowdown (2.8×) compared to using only DRAM. There-
fore, Aquila makes it practical to support large heaps (and
datasets) without application redesign, and only requires
limited modifications during initialization.

6.3 Reducing I/O cache overhead with Aquila
In this section we show that Aquila outperforms user-space
caching with direct I/O even in the case where the dataset
is larger that the available DRAM cache. We use RocksDB
with a similar setup as in Section 6.1.

Figure 7 shows that RocksDB with a user-space cache
requires 65.4𝐾 cycles on average for random reads. We break
this down to three sections: (a) Device I/O, which excludes
system call overhead, (b) cache management, which includes
system call overhead, and (c) RocksDB get, excluding cache
accesses. Device I/O is the lowest cost at about 4.8𝐾 cycles.
Cache management accounts for approximately 45.2𝐾 cycles.
We further break this cost down to (i) system calls for misses
and (ii) user-space cache lookups and evictions. System calls
cost around 13𝐾 cycles and user-space lookups and evictions
around 32𝐾 cycles. Finally, RocksDB get incurs a cost of
about 15.3𝐾 cycles.
RocksDB with Aquila requires 3.9𝐾 cycles for I/O. This

improvement, compared to 4.8𝐾 cycles with the user-space
cache, comes from our optimizedmemcpy (Section 3.3). Cache
management costs about 17.5𝐾 cycles. Cache management
in Aquila consists of two main parts: Page fault cost during
misses of about 5.6𝐾 cycles and user-space data processing
in RocksDB of about 11.8𝐾 cycles. RocksDB get now requires
18.5𝐾 cycles. This is higher compared to the 15.3𝐾 cycles
when using explicit I/O because of increased TLB misses,
as Aquila modifies memory mappings and flushes the TLBs
more frequently.
It is apparent that managing the user-space I/O cache

requires about 69% of the total CPU cycles for RocksDB
reads in the case of explicit I/O. Faster storage devices will
stress this path further, increasing even more the related
overheads. Aquila allows applications to take advantage of
fast storage devices more effectively. With Aquila, RocksDB
requires 2.58× fewer CPU cycles for cache management.
Aquila spends 43.7% of the total CPU cycles consumed by
RocksDB for I/O, while also achieving 40% higher end-to-end,
user-perceived throughput.
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Figure 6. (a)-(b) Execution time for Ligra running BFS with mmap, Aquila (with pmem and NVMe device), and DRAM-only
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6.4 Reduced overhead of Aquila vs. Linux mmap
First, we look at the cost of protection domain switching.
Figure 8(a) shows the average overhead for a page fault over
a memory-mapped file to be about 5380 cycles in total. Two
major components of this overhead are: (1) 49% is due to
device I/O overhead and (2) 24% is due to the cost of the
protection domain switch (trap). If we exclude device I/O,
e.g., when the page resides in the page cache, the cost of a
page fault (2724 cycles or 1.13𝜇𝑠) is comparable to access-
ing fast storage devices. We measure the protection domain
switch cost (excluding the handler itself) to be 1287 cycles
(536𝑛𝑠). In this measurement, if we exclude I/O cost, then
switching domains is 1287 out of 2724 cycles, thus 52.7% of
the page fault cost. Reducing the protection domain switch
overhead will affect all page faults that happen in the com-
mon path. Figure 8(a) shows that the trap cost in non-root
ring 0 (Aquila) is 552 cycles (230𝑛𝑠), which is 2.33× lower
compared to exceptions from ring 3.
Figure 8(b) shows the average overhead breakdown for

the case where the dataset does not fit in main memory
and evictions happen in the common path. In this case we
use 8𝐺𝐵 for the DRAM cache and a 100𝐺𝐵 dataset. Aquila
achieves 2.06× lower overhead compared to Linux mmap.
We observe that in this case the major sources of overhead

are protection domain switching and I/O to the underlying
device. Finally, we observe that in Aquila, no single source
of overhead dominates in the common path, even in the case
where evictions occur in the common path: Each component
of the Aquila mmio path accounts for less than 10% of over-
head. We omit the presentation of results for writes as we
observe similar behavior and performance to reads.

Figure 8(c) demonstrates how the I/O path affects the per-
formance in Aquila. Cache-Hit is the case where no I/O is
required and the total cost in this case is 2179 cycles. DAX-
pmem uses our optimized path for byte-addressable devices
and HOST-pmem uses direct I/O system calls to the host
OS. In this case, Aquila achieves 7.77× lower overhead. This
stems from the fact that we remove system calls and use a
SIMD-optimized memcpy. SPDK-NVMe uses SPDK to bypass
the host OS for PCIe attached devices. HOST-NVMe uses
direct I/O, similar to HOST-pmem. In the case of Aquila, by-
passing the host OS reduces overhead by 1.53×. In all cases,
the remaining cost, excluding the I/O, remains the same.
This shows that the method used to access storage devices in
Aquila affects overall performance. Removing the interaction
with the host OS reduces overhead by up to 7.77×.

Finally, we use Aquila with Kreon, a persistent key-value
store designed to use mmio in the common path. Kreon pro-
vides a custom mmio path, named kmmap, which improves
several aspects of Linux mmap. We compare Kreon over
kmmap with Kreon over Aquila. We run all YCSB workloads
using a single thread to show how overhead reduces in the
single-thread path, with a dataset of 16𝑀 records (16𝐺𝐵) and
a 8𝐺𝐵 cache.

Figure 9 shows our results. Using NVMe, Aquila achieves
on average 1.02× higher throughput for all YCSB workloads.
In this case the bottleneck is the NVMe device itself given
the request size (4𝐾𝐵) and a single outstanding I/O. Latency
improves significantly: Aquila achieves 1.29× lower average
latency and 3.78× tail (p99.9) latency compared to kmmap.
With pmem, where device throughput is not the dominat-
ing bottleneck, Aquila achieves on average 1.22× higher
throughput. We also see significant improvements in terms
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of latency: Aquila achieves 1.43× lower average latency and
13.72× lower tail (p99.9) latency.

6.5 Improved scalability of Aquila vs. Linuxmmap
Next, we examine how Aquila scales with an increasing
number of cores. We distinguish two cases for accessing files
with mmio: when all threads access a single shared file and
when each thread accesses a different file.

Figure 10 shows our results for a dataset (100𝐺𝐵) in two
cases, one where it fits in memory (100𝐺𝐵 DRAM) and one
where it does not fit in memory (8𝐺𝐵 DRAM). In both cases,
as we increase the number of threadsAquila scales as follows:
For a single shared file that fits in memory, Aquila achieves
1.81× higher throughput with 1 thread and 8.37× with 32
threads. In the case where the dataset does not fit in memory,
the improvement is even more pronounced compared to
Linux mmap: Aquila performs better by 2.17× at 1 thread
and by 12.92× at 32 threads.

We use profiling to identify the reason for the large im-
provement over Linuxmmap for a single shared file. We find
that in Linux, a single lock protects the radix tree of cached
pages, and, as a result, is highly contended. Aquila replaces
this single lock with a lock-free hash table which stores
all cached pages. We notice similar behaviour for writes in
Linux, as this lock is also required to mark a page as dirty.
Aquila uses per-cpu red-black trees to store dirty pages, thus
overcoming this limitation.
Using a separate file per thread, we also see significant

improvements: Aquila achieves higher throughput between
1.82× (1 thread) and 1.99× (32 threads) using the in-memory
dataset and between 2.21× (1 thread) and 2.84× (32 threads)
for the out-of-memory dataset.
Aquila also provides consistently better latency for all

these experiments, both average and tail. Using a single
thread and the dataset which does not fit in main memory,
Aquila achieves 2.07× lower average latency. Furthermore,
Aquila has 13.6× (p99) and 2.1× (p99.9) lower tail latency.

Using 32 threads the improvements of Aquila in terms of
latency are even greater. Using a shared file, Aquila achieves
8.52× (average), 177× (p99), and 213× (p99.9) lower latency.
For a separate file per thread Aquila achieves lower latency
by 1.64× (average), 42.64× (p99), and 53.2× (p99.9). Eliminat-
ing the shared contended lock in the shared file case provides
huge improvements in tail latency for Aquila.

We see similar behaviour in writes compared to reads. For
this reason, we omit the presentation of write results.

7 Related Work & Discussion
We categorize related work in three areas: (a) I/O over fast
devices, (b) improvements to mmio, and (c) dataplane OSes.

7.1 I/O over fast storage devices
Synchronous read/write system calls result in significant
overheads and thus several different approaches have been
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Figure 10. Scalability of Aquila vs. Linux mmap using random reads for both a shared and a private file per thread with (a) a
dataset that fits in memory and (b) a dataset that does not fit in memory.

proposed to mitigate their overhead. A user-space cache is
often used to eliminate expensive system calls. However, a
user-space cache still incurs high lookup overhead for fre-
quent hits [24]. In addition, it becomes even less effective
when misses that require system calls start to increase, espe-
cially for larger datasets.
Using asynchronous system calls and batching, such as

libaio and io_uring[32] can help mitigate system call over-
head. The latter is the state-of-the-art approach for asyn-
chronous I/O. It allows batching in the issue path, with a
single system call initiating multiple I/O operations. In the
completion path, it does not require any system calls as it
uses shared memory between user and kernel space, and
merely checks for completion in user-space memory. Asyn-
chronous I/O reduces the required CPU cycles in the I/O path
and increases throughput in most cases. However, it also in-
creases tail latency due to batching and can negatively affect
latency-sensitive applications. Moreover, asynchronous I/O
is significantly more complex for applications to use.
An alternative to traditional (synchronous or asynchro-

nous) system calls for explicit I/O is to provide user-space
access to certain types of devices, such as byte-addressable
NVM and block-addressable NVMe devices [37, 43, 61]. This
path does not require a system call and typically lacks strong
protection and sharing of resources. Moreover, as the user-
space frameworks bypass the kernel, they need to use polling
when waiting for completions, resulting in higher CPU uti-
lization, a problem that is particularly acute with current
technology trends. Most of the user-space frameworks also
employ user-space caching to reduce the number of accesses
to storage devices, e.g., BlobFS [59] which is part of SPDK.
However, these systems incur the high hit overhead of user
space caches.

Aquila takes a different approach by using mmio in two
respects: Firstly, it allows synchronous I/O which is impor-
tant for latency purposes and is easiest for the programmer.
Secondly, it removes the user-space software cache lookups
from the common path by using hardware address trans-
lation for lookups. Therefore, Aquila has the potential to
reduce fundamental overheads for fast storage devices. The
challenge we address is to improve mmio in a way that sepa-
rates common from uncommon path operations which up
to this point have been traditionally bound together.
Byte-addressable NVM devices today are used as an ex-

tension of DRAM (pmem) and essentially always used with
DAX. DAX allows direct mapping of NVM to the user address
space, next to available DRAM. In this case, user-space li-
braries [14, 23, 25, 39, 52, 65, 67] can be used to provide higher
level abstractions. However, NVM latency and throughput
are about 3x worse than DRAM [31] making management of
this hybrid memory space (DRAM and NVM) a significant
challenge. Instead, Aquila uses DRAM as a cache to pmem
with low overhead. Although Aquila has the additional po-
tential to transparently extend the process address space
over pmem, hiding device heterogeneity, our primary goal
in this paper is to improve persistent storage I/O.

7.2 Improvements to mmio
The evaluation of Tucana [47], a key-value store which uses
mmio, shows that for write-intensive workloads, Linuxmmio
results in excessive and unpredictable traffic to devices, lead-
ing to freezes during execution and consequently high tail
latency.
Kmmap [48] is a custom mmio path in the Linux ker-

nel tailored for Kreon, a memory-mapped key-value store.
Kmmap provides several improvements in the Linux mmio
path to reduce performance variability due to the aggressive
writeback policy of Linux. Additionally, kmmap provides a



EuroSys ’21, April 26–29, 2021, Online, United Kingdom A. Papagiannis et al.

custom msync operation, based on Copy-On-Write seman-
tics of Kreon. Copy-On-Write ensures that Kreon updates
only newly allocated pages and there will be always only one
timestamp for the latest (single) update. msync in kmmap
writes pages based only on this timestamp. Kmmap does not
address scalability issues with the number of user threads for
a single memory mapping. Similar to kmmap, Aquila uses a
lazy writeback strategy compared to Linux. However, Aquila
provides the ability to use custom cache and device access
mechanisms and policies combined with the reduced cost of
the removal or protection domain switched.

FastMap [50] demonstrates that the Linuxmmio path fails
to scale efficiently with increasing application threads. To
overcome this issue, the authors (a) separate clean and dirty-
trees to avoid all centralized contention points, (b) use full
reverse mappings instead of Linux object-based reverse map-
pings to reduce CPU processing, and (c) introduce a scal-
able DRAM cache with per-core data structures to reduce
latency variability. FastMap requires a custom Linux ker-
nel and, being a loadable kernel module, it does not allow
per-application customization. Similar to FastMap, Aquila
uses separate data structures for clean and dirty pages to
reduce contention. Unlike FastMap, Aquila enables applica-
tions to use custom cache and device access mechanisms and
policies, on an unmodified Linux kernel. In addition, Aquila
reduces the overhead (CPU cycles) in the page fault path by
eliminating the need for protection domain switches.
DI-MMAP [18, 19] removes the swapper from the crit-

ical path and implements a custom (FIFO based) eviction
policy using a fixed-size memory buffer for all mmap calls.
UMap [51] is a user-space memory-mapped I/O framework
which adapts different policies to application characteristics
and storage features. Handling page faults in user-space (us-
ing userfaultfd [36]) introduces additional overheads that
are not acceptable with fast storage devices. Song et al. [58]
propose an optimized page reclamation procedure with a
new page recycling method to reduce context switches. This
makes it possible to use extended vector I/O – a parallel page
I/O method. In Aquilawe take a more fundamental approach,
by placing the application in non-root ring 0 and eliminating
protection domain switch overheads.

7.3 Dataplane operating systems
Exokernel [17] proposes to separate the OS dataplane and
the OS control plane to provide higher throughput and lower
latency with specialized library OSes. Systems, such as IX [5],
ZygOS [55], Shinjuku [33], MICA [40], and Chronos [34]
optimize the network path, while Aquila targets the storage
path. Although storage and networking share similarities,
they need to address different challenges related to virtual
memory management.
Arrakis [53] targets storage I/O in addition to network-

ing. Arrakis uses SR-IOV [29] to provide multiple virtual
PCIe devices and handle protection and multiplexing in the

I/O controller. Aquila takes a more holistic approach that
includes the user-space storage cache and improves virtual
memory management and device access in mmio.
Similar to IX [5], ZygOS [55], and Shinjuku [33] Aquila

uses Dune [4] to have access to privileged hardware features.
These systems target networking while Aquila reduces ac-
cess overhead for fast storage devices. ReFlex [38] provides
an optimized path to access remote flash storage. It uses Dune
to closely integrate networking and storage processing, and
achieves low latency and high throughput in the storage
server. In Aquila we assume that the server has access to fast
local storage devices. Approaches similar to ReFlex can be
used orthogonally to our work for remote storage.

8 Conclusions
In this paper we argue that mmio can reduce I/O overhead
over fast storage devices by eliminating the cost of I/O cache
hits compared to other alternatives, such as moving the I/O
page cache in user space. However, using mmio via Linux
mmap introduces several limitations, including the neces-
sity to use the kernel-space shared I/O page cache, specific
mechanisms for device access, and expensive page faults.

We design Aquila, a library OS that addresses these limita-
tions by collocating the application and mmio functionality
in non-root ring 0. Aquila allows applications to use mmio
efficiently by reducing the cost of page faults, and customize
the I/O path (I/O cache and device access mechanisms and
policies), while requiring limited application modifications
by maintaining compatibility with Linux mmap.

We implement Aquila using Dune, and evaluate it in detail
with micro-benchmarks, two persistent key-value stores, and
a graph processing framework.We observe significant perfor-
mance gains both in terms of throughput and latency. Aquila
requires 2.58× fewer CPU cycles for cache management in
RocksDB, compared to user-space caching and read/write
system calls, and improves request throughput by up to 40%.
For a graph-processing application with its heap extended
over fast storage devices,Aquila reduces execution time up to
4.14× compared to Linuxmmap, with minimal modifications
to the application.
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