
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

We thankfully acknowledge the support of the European Commission under the
Horizon 2020 Framework Programme for Research and Innovation through the
ExaNeSt (GA 671553) and EVOLVE (GA 825061) projects and the General
Secretariat of Research and Technology in Greece through project Sentitour at
Scale (T1EDK-02857).

ACKNOWLEDGEMENTS

MOTIVATION

Institute of Computer Science (ICS), Foundation of Research and Technology – Hellas (FORTH), Greece
Computer Science Department, University of Crete, Greece

Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Manolis
Marazakis, and Angelos Bilas

Optimizing Memory-mapped I/O for Fast Storage

Anastasios Papagiannis (apapag@ics.forth.gr) is also supported by the Facebook Graduate Fellowship 2019-2021.

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

1 2 4 8 16 32

m
illi
on

pa
ge
-fa
ul
ts
/s
ec

(IO
PS

)

#threads

Linux-5.0-read
Linux-5.0-write
Linux-4.14-read
Linux-4.14-write
FastMap-read
FastMap-write

address_space

tree_lock
(spinlock)

i_mmap_rwsem
(read_write_semaphore)

page_tree
(radix_tree)

i_mmap
(rb_tree)

vma vma

mm_struct

pgd

page

file

page mm_struct

vma vmaprocess

pgd

file

vma

PFDper-core per-core

per-core

PPR

PPR

PPR

PPR

PPR

. . .

per-core

PPR

PPR

PPR

PPR . . .

PVE

VMA
Virtual

Address

per-core

PPR

PPR

PPR

PPR

PPR

. . .

PVE PVE
pa

ge
_t

re
e

(ra
di

x_
tr

ee
)

di
rt

y_
tr

ee
(rb

_t
re

e)

pa
ge

_t
re

e
(ra

di
x_

tr
ee

)

di
rt

y_
tr

ee
(rb

_t
re

e)

.

page page page.

vma vma

process

LINUX MEMORY-MAPPED I/O STACK

FASTMAP DESIGN

• Use Memory-mapped I/O instead of Read/Write API for
Fast Storage Devices

• Removes the need of system-calls
• Removes the need of data copying between user and kernel
• Extend the virtual address space beyond the physical

memory size over a fast storage device
• Lots of random memory accesses
• But:

• FastMap provides a scalable design for Memory-Mapped I/O
• … which results also in higher concurrency to devices
• Scalable (per-core and/or sharded) data structures
• Full reverse mappings

EXECUTION TIME BREAKDOWN - MICROBENCHMARK

0

100

200

300

400

500

mm
ap
-rd

mm
ap
-w
r

Fa
stM
ap
-rd

Fa
stM
ap
-w
r

#s
am

pl
es

(x
10
00
)

fnish_fault
mark_pg_dirty
mkwrite_function
DRAM-cache
LRU
I/O
page_alloc
fault_function
handle_mm_fault
VMA-lock
page_fault
run_random
main

EXECUTION TIME BREAKDOWN - KREON

0
50
100
150
200
250
300
350
400

1 2 4 8 16 32 1 2 4 8 16 32

tim
e
(s
ec
)

#cores

FastMap mmap

idle
iowait

kworker
pgfault
others
ycsb
kreon

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 1 2 4 8 16 32

tim
e
(s
ec
)

#cores

FastMap mmap

idle
iowait

kworker
pgfault
pthread
others
ycsb
kreon

• Kreon is a persistent key-value store designed over mmap()

YCSB – 100% inserts YCSB – 100% reads

1. Anastasios Papagiannis, Giorgos Saloustros, Pilar González-
Férez, and Angelos Bilas. 2018. An Efficient Memory-Mapped
Key-Value Store for Flash Storage. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC '18)

REFERENCES

• PFD: Per-File-Data
• PVE: Per-Vma-Entry
• PPR: Per-Pve-Rmap

• Which also results in limited concurrency to the devices

• Contention in tree_lock
• i_mmap_rwsem limits concurrency even as read-lock

mailto:apapag@ics.forth.gr

