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LINUX MEMORY-MAPPED I/O STACK

FASTMAP DESIGN

• Use Memory-mapped I/O instead of Read/Write API for 
Fast Storage Devices

• Removes the need of system-calls
• Removes the need of data copying between user and kernel
• Extend the virtual address space beyond the physical 

memory size over a fast storage device
• Lots of random memory accesses
• But:

• FastMap provides a scalable design for Memory-Mapped I/O
• … which results also in higher concurrency to devices
• Scalable (per-core and/or sharded) data structures 
• Full reverse mappings
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EXECUTION TIME BREAKDOWN - KREON
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• Kreon is a persistent key-value store designed over mmap()

YCSB – 100% inserts                      YCSB – 100% reads
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• PFD: Per-File-Data
• PVE: Per-Vma-Entry
• PPR: Per-Pve-Rmap

• Which also results in limited concurrency to the devices

• Contention in tree_lock
• i_mmap_rwsem limits concurrency even as read-lock
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