

Computer Architecture & VLSI Systems Laboratory (CARV)
http://www.ics.forth.gr/carv

An Efficient Memory-Mapped Key-Value
Store for Flash Storage

Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, Angelos Bilas
{apapag, gesalous, pilar, bilas}@ics.forth.gr

Foundation for Research and Technology - Hellas (FORTH), Greece
University of Crete, Greece University of Murcia, Spain

Key-Value Stores Today

Kreon Design

•  Key-value store: Dictionary that stores arbitrary key-value pairs
•  Used extensively: web indexing, social networks, data analytics
•  Supports inserts, lookups, scans and deletes

•  Today key-value stores are inefficient
•  Consume a lot of CPU cycles - mainly designed for HDDs

•  Our goal: Improve efficiency of key-value stores
•  Reconsider design of key-value stores for fast storage (SSDs)

With the support of the European Commission under the Horizon 2020 Framework
Programme for Research and Innovation through the Vineyard (GA 687628) and
ExaNeSt (GA 671553) projects.

•  YCSB, Small (memory) and Large (device) Dataset
•  Efficiency: Up to 8.3x less cycles/op compared to RocksDB.

•  Throughput: Up to 5.3x more ops/sec compared to RocksDB.
•  I/O Amplification: Up to 4.6x less MB written compared to

RocksDB in write intensive workloads.

Experimental Analysis

Issues with current approaches

Efficiency Throughput

•  Spill vs. Compaction
•  Produce many small random read I/Os
•  Does not affect performance in fast storage devices

•  Keep an index per-level
•  Does not require sorting and merging

•  Kmmap vs. Linux kernel mmap()
•  Choose what to evict using per-page priority
•  Level-0: priority 0
•  Level-1 (index): priority 1
•  Level-1 (leaves): priority 2
•  Append-only Log: priority 3
•  Evict pages with high priority first

•  Copy-On-Write allows us to optimize msync()
•  Keep timestamp when a page becomes dirty
•  On msync() write only pages that dirtied before this call
•  Allow to dirty pages concurrently

•  Data caching and I/O
•  Key-value stores require a user-space DRAM cache
•  Explicit I/O using read()/write()
•  Hits in DRAM require lookup – significant overhead
•  Both for index and data, in every traversal
•  Alternative: mmap()

•  Linux kernel mmap()
•  Cannot control page eviction
•  System freezes with heavy workload – high tail latencies

Memory	

Disk	Compaction	 Compaction	

Level	1	 Level	2	 Level	3	

Level	0	

High	I/O	amplification!	

High	CPU	utilization!	

Good	I/O	pattern	for	HDDs!	

 0

 0.5

 1

 1.5

 2

 2.5

 3

4 8 16 32 25
6

10
24

Th
ro

ug
hp

ut
 (G

B/
s)

Request Size (KB)

Read

4 8 16 32 25
6

10
24

Request Size (KB)

Write
Samsung-SSD

Samsung-NVMe
Intel-NVMe

 0
 2
 4
 6
 8

 10

Lo
ad

 A

R
un

 A

R
un

 B

R
un

 C

R
un

 F

R
un

 D

Lo
ad

 E

R
un

 E

Im
pr

ov
em

en
t Large Dataset

Small Dataset

 0

 4

 8

 12

 16

Lo
ad

 A

R
un

 A

R
un

 B

R
un

 C

R
un

 F

R
un

 D

Lo
ad

 E

R
un

 E

Im
pr

ov
em

en
t Large Dataset

Small Dataset

Merge

Level 0

Level 1

Log

