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Persistent key-value stores have emerged as a main component in the data access path of modern data
processing systems. However, they exhibit high CPU and I/O overhead. Nowadays, due to power limitations,
it is important to reduce CPU overheads for data processing.

In this paper, we propose Kreon, a key-value store that targets servers with flash-based storage, where CPU
overhead and I/O amplification are more significant bottlenecks compared to I/O randomness. We first observe
that two significant sources of overhead in key-value stores are: (a) The use of compaction in LSM-Trees
that constantly perform merging and sorting of large data segments and (b) the use of an I/O cache to access
devices, which incurs overhead even for data that reside in memory. To avoid these, Kreon performs data
movement from level to level by using partial reorganization instead of full data reorganization via the use of
a full index per-level. Kreon uses memory-mapped I/O via a custom kernel path to avoid a user-space cache.

For a large dataset, Kreon reduces CPU cycles/op by up to 5.8%, reduces I/O amplification for inserts by up
to 4.61x%, and increases insert ops/s by up to 5.3%, compared to RocksDB.
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1 INTRODUCTION

Persistent key-value stores [2, 25, 31, 34] are a central component for many analytics processing
frameworks and data serving systems. These systems are considered as write-intensive because
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1:2 A. Papagiannis et al.

they typically exhibit bursty inserts with large variations in the size of data items [16, 68]. To better
serve write operations, key-value stores have shifted from the use of B-trees [8], as their core
indexing structure, to a group of structures known as write-optimized indexes (WOIs) [41]. This
transition took place because even though B-trees [8] are asymptotically optimal in the number of
block transfers required for point and range queries, their write performance degrades significantly
as the index grows [47].

A prominent data structure in the WOIs group is LSM-Tree (Log-Structured Merge-Tree) [60].
LSM-Tree has two important properties: (a) it amortizes device write I/O operations (I/Os) over
several insert operations and (b) it is able to issue only large I/Os to the storage devices for both
reads and writes, essentially resulting in sequential device accesses. These properties have made
LSM-Tree appropriate for hard disk drives (HDDs) that suffer from long seek times and their
throughput drops by more than two orders of magnitude in the presence of random I/Os. However,
these desirable properties come at the expense of significant CPU overhead and I/O amplification.
LSM-Tree needs to constantly merge and sort large data segments which leads to both high CPU
utilization and increased I/O traffic [64, 76].

Another key point is that modern key-value stores incur significant CPU overhead for caching
data in their address space [38]. Key-value stores need to cache data in user-space to avoid frequent
user-kernel crossings and accesses to devices. Therefore, at runtime, there is a need to maintain a
lookup structure for data items that reside in memory. Lookup operations occur in the common
path and are required not only for misses but also for hits, when data reside in memory. These
common path lookup operations incur significant cost in CPU cycles. Harizopoulos et al. [38]
claim that about one-third of the total CPU cycles of a database system is spent in managing the
user-space cache when the dataset fits in memory. Furthermore, the cache needs to manage 1/O to
the devices via the system call interface that is expensive for fine-grain operations and requires
data copies for crossing the user-kernel boundary. In our work, we find that cache and system call
overheads in RocksDB [31], a state-of-the-art persistent key-value store, are up to 28% of the total
CPU cycles used (see Table 3).

With current technology limitations and trends, these two issues of high CPU utilization and I/O
amplification are becoming a significant bottleneck for keeping up with data growth. Server CPU is
the main bottleneck in scaling today’s infrastructure due to power and energy limitations [48, 53, 67].
Therefore, it is important to increase the amount of data each CPU can serve, rather than rely
on increasing the number of CPUs in the datacenter. In this context, flash-based storage, such as
solid state drives (SSDs), introduces new opportunities by narrowing the gap between random and
sequential throughput, especially at higher queue depths (number of concurrent I/Os). Figure 1
shows the throughput of an SSD and two NVMe (Non-Volatile Memory express) devices with
random I/Os and increasing request size. At a queue depth of 32, an I/O request size of 32 KB for
SSDs and 8 KB for NVMe achieve almost the maximum device throughput. Therefore, increased
traffic due to I/O amplification is becoming a more significant bottleneck than I/O randomness.
This trend will be even more pronounced with emerging storage devices that aim to achieve sub-us
latencies.

In this paper we present Kreon [62], a key-value store that aims to reduce CPU overhead and
I/O traffic by trading I/O randomness. Kreon combines ideas from LSM [60] (multilevel structure),
bLSM [68] (B-Tree index), Atlas/WiscKey [48, 54] (separate value log), and Tucana [61] memory-
mapped I/O. Additionally, Kreon uses a fine-grain spill mechanism which partially reorganizes
levels to provide high insertion rates and reduce CPU overhead and I/O traffic. Kreon uses a write
optimized data structure that is organized in N levels, similar to LSM-Tree, where each level i acts
as a buffer for the next level i+1. To reduce I/O amplification, Kreon does not operate on sorted
buffers, but instead it maintains a B-tree index within each level. As a result, it generates smaller
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Fig. 1. Throughput vs. block size (using iodepth 32) for Samsung SSD 850 Pro 256 GB, Samsung 950 Pro
NVMe 256 GB, and Intel Optane P4800X NVMe 375 GB devices, measured with FI1O [3].

I/0 requests in favor of reduced I/O amplification and CPU overhead. Kreon still requires and uses
multiple levels to buffer requests and amortize I/O operations.

Furthermore, Kreon uses memory-mapped I/O to perform all I/O between memory and (raw)
devices. Memory-mapped I/O essentially replaces cache lookups with valid memory mappings,
eliminating the overhead for data items that are in memory. Misses incur a page fault and require
an I/O operation that happens directly from memory without copying data between user and
kernel space. However, the asynchronous nature of memory-mapped I/O means that I/O happens
at page granularity, resulting in many and small I/Os, especially for read operations. In addition,
memory-mapped I/O does not provide any type of consistency, recoverability, nor the ability to tune
I/0O for specific needs. To overcome these limitations, we implement a custom memory-mapped
I/O path, kmmap, as a Linux kernel module. kmmap addresses these issues and provides all the
benefits of memory-mapped storage: it removes the need to use DRAM caching both in kernel and
user space, eliminates data copies between kernel and user space, and removes the need for pointer
translation.

Key-value stores typically serve both local (same node) and remote (network) clients. Since we are
interested in reducing CPU overhead, it is important to examine the overhead of efficient network
protocols. For this reason we implement an RDMA-based (Remote Direct Memory Access) protocol
for remote clients and we examine its relative cost in CPU cycles on the server side compared to
index manipulation and I/O in Kreon.

We implement Kreon and evaluate its performance by using YCSB (Yahoo! Cloud Serving Bench-
mark) and large datasets of up to 6 billion keys. We compare Kreon with RocksDB [31], a state-of-
the-art, LSM-Tree based, persistent key-value store which has lately been optimized for SSDs [26].
Our results show that using both datasets that stress I/O and datasets that fit in memory, Kreon
reduces the amount of cycles/op by up to 8.3x. Additionally, Kreon reduces I/O amplification for
insert-intensive workloads by up to 4.6x and increases ops/s by up to 5.3x. Our analysis of CPU
overheads also shows that a saturated Kreon server can achieve up to 2.4M YCSB insert requests/s.
Our network communication analysis shows that RDMA overhead in persistent key-value stores is
low and that a 40 Gbps link should be able to serve 64 cores with Kreon.

Overall, the contributions of this paper are:
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(1) The combination of multilevel data organization with full indexes at each level and a fine-
grain spill mechanism that all together reduce CPU overhead and I/O traffic at the expense
of increased I/O randomness.

(2) The design and implementation of kmmap a custom memory-mapped I/O path to reduce
the overhead of explicit I/O and address shortcomings of the native mmap path in Linux for
modern key-value stores.

(3) The implementation and detailed evaluation of a full key-value store compared to a state-of-
the-art key-value store in terms of absolute performance, CPU and I/O efficiency, execution
time breakdown, tail latencies, and device behavior.

Our work in this paper extends Kreon [62], as follows. We design and evaluate an efficient
approach for concurrency control and increased parallelism in the write path. The initial version
of Kreon provides a single-writer/multiple-readers concurrency model. In addition, we provide
an analysis of the design for garbage collecting the value log of Kreon. Furthermore, and to allow
efficient access to Kreon from network clients, we design and evaluate in terms of CPU cycle
overhead, an RDMA-based network protocol for remote client access to key-value stores. In this
work we are particularly interested on the overhead of the protocol in the server (Kreon) side.
Finally, to show the effectiveness of Kreon as the storage engine in modern software stacks, we use
Kreon as the storage engine in MongoDB [58] and we provide an evaluation using YCSB.

The rest of this paper is organized as follows: Section 2 provides a background on persistent
key-value stores. Section 3 presents our design and implementation of Kreon. Section 4 presents
our evaluation methodology and experimental results. Section 5 reviews related work and Section 6
provides our conclusions.

2 BACKGROUND
2.1 Write-Optimized Key-Value Stores

B-tree [8] is asymptotically optimal in the number of block transfers required for point (lookups)
and range (scans) queries. However, write performance degrades as the index grows [47]. The
increasing interest for systems that are able to absorb bursty writes has led to the emergence and
broad use of write-optimized data structures, which aim to improve writes while keeping read
performance close to B-tree. A popular data structure in this group is LSM-Tree [60]. LSM-Tree
organizes its key-value pairs in multiple hierarchical levels in order to amortize write operations.
O’Neil et al. [60] do not provide specific information on how each level is organized and two
alternatives are in use today: (a) sorted arrays per-level or (b) a full index per-level. HDDs favor
the use of the first alternative.

Inserts in LSM-Tree are served from memory, by typically using a skip-list [31]. Data are gradually
moved to lower levels, as the current level fills up. To move data between levels and eliminate
updated values, LSM-Tree uses compactions (see Figure 2). Compaction moves data from L; to L;;;
by reading and sorting large buffers in memory and subsequently writing them to storage at L;,1.
Compactions have the advantage that they generate only large I/O requests which makes LSM-Tree
preferable to other index structures for hard disk drives (HDDs). On the other hand, compactions
result both in I/O amplification and CPU overhead due to moving data from one level to another.
Kreon uses a different approach and introduces a full index per-level rather than sorted arrays, in
order to reduce I/O amplification and CPU overheads.

2.2 B-tree Concurrency Protocols

An application can increase concurrency by breaking the dataset in multiple shards where each
shard maps to a separate B-tree. However, in workloads with Zipfian distribution, a small subset
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of the shards can receive a large number of requests, which makes concurrency within a B-tree
important.

Each node in a B-tree (except the root) contains [%, B] elements, where B is the fan out of the
tree. In the case of a node overflow (more than B) or underflow (less than %), B-tree applies one of
the following rebalance operations: (1) split, (2) left/right merge, and (3) left/right rotate as defined
in [9]. These rebalance operations make fine-grain concurrency in B-tree complicated.

Bayer et al. [9] propose three protocols for increased concurrency during insert operations in a
B-Tree. Using the first protocol, an insert operation starts from the root and acquires a per-node
lock until the leaf node. The second protocol is similar to the first, except that for each index node
the lock is acquired as a read lock and only for the leaf node the lock is acquired as a write lock.
Finally, the third protocol tries to achieve concurrency within the leaves by introducing a new type
of lock named update lock. This lock is initially acquired as a read lock and is converted to a write
lock only when the address of the insert operation is computed.

3 DESIGN
3.1 Overview

Kreon, similar to Atlas [48], Tucana [61], and Wisckey [54], stores key-value pairs in a log to avoid
data movement during reorganization from level to level. Kreon organizes its index in multiple
levels of increasing size and transfers data between levels in batches to amortize I/O costs, similar
to LSM-Tree. But unlike LSM-Tree, within each level, Kreon organizes keys in a B-tree with leaves
of page granularity similar to bLSM [68]. However, unlike bLSM, Kreon transfers data between
levels via a spill operation, rather than full reorganization of the data in the next level. Spills are a
form of batched data compaction that merge keys of two consecutive levels [L;, L; + 1]. However,
spills do not read the entire L;;; during merging with L; and do not reorganize data and keys on a
sequential part of the device [68]. Instead, Kreon spills read/write level L;,; partially using the full
B-tree index of each level.

The trade-off is that during spills, Kreon generates random read I/O requests at large queue depth
(high I/O concurrency) to significantly reduce I/O traffic and CPU overhead. On the other hand,
write I/O requests are relative large for writing updated parts of L;,; index. This is because Kreon
B-tree uses Copy-on-Write for persistence [35] and a custom segment allocator so updated leaves
are written close on the device.

Furthermore, Kreon uses memory-mapped I/O to eliminate redundant copies between kernel
and user space and constant pointer translation. Kreon’s memory-mapped I/O path is designed to
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provide efficient support for managing I/O memory addressing shortcomings of the default mmap
path in the Linux kernel. These shortcomings are: (a) It does not provide explicit control over data
eviction, as with an application-specific cache, (b) it results in an I/O even for pages that include
garbage, and (c) it employs eager evictions to free memory, which results in excessive I/O, in order
to avoid starving other system components.

Figure 3 depicts the architecture of Kreon showing two levels of indexes, the key-value log, and
the device layout. Next, we discuss our design for the system index and memory-mapped I/O in
detail.

3.2 Index Organization

Kreon offers a dictionary API (insert, delete, update, get, scan) of arbitrary sized keys and values
stored in groups named regions. Each region can map either to a table or shards of the same table.
For each region it stores key-value pairs in a single append-only key-value log [54, 61] and keeps
a multilevel index. The index in each level is a B-tree [8], which consists of two types of nodes:
internal and leaf nodes. Internal nodes keep a small log where they store pivots, whereas leaf nodes
store key entries. Each key entry consists of a tuple with a pointer to the key-value log and a
fixed-size key prefix. Prefixes are the first M bytes of the key used for key comparisons inside a leaf.
They reduce significantly I/Os to the log since leaves constitute the vast majority of tree nodes. If
the effectiveness of prefixes is reduced due to low entropy of the keys, existing techniques discuss
how they can be recomputed [12].

During inserts, Kreon appends the key-value pair to the key-value log, then it performs a top-
down traversal in its Ly B-tree, from the root to the corresponding leaf, and adds a key entry to the
leaf. Get operations examine hierarchically levels from L, to L and return the first match. Since
inserts propagate with the same order as get operations, the version of the retrieved key is the
most recent. Delete operations mark keys with a tombstone and defer the actual delete operation.
During system operation we use the marked key entries for subsequent inserts that reuse the index
entry and mark as free the deleted (old) key-value pair in the log. Marked and unused entries in
the index are reclaimed during spills. Marked space in the log is reclaimed asynchronously, as
discussed in Section 3.2.2. Update operations are similar to a combined insert and delete. Scan
operations create a scanner per-level and use the index to fetch keys in sorted order. They combine
the results of each level to provide a global sorted view of the returned keys. Scans, similar to other
systems [31], access all data inserted to the system up to the scanner creation time and they operate
on an immutable version of each tree which is facilitated by the Copy-On-Write approach used by
Kreon (Section 3.4).

Similar to LSM-Tree, Ly in Kreon always resides entirely in memory. Portions of levels > 1 are
brought in memory on demand. Kreon enforces memory placement rules for different levels by
using kmmap and explicit priorities (Section 3.3).

3.2.1 Spill Operations. When level i, L;, fills up beyond a threshold, Kreon merges L; into L;;
via a spill operation. Spills are conceptually similar to LSM-Tree compactions [31, 34, 68], however,
they operate differently. Spills avoid sorting by using the B-tree of the level to scan L; keys in
lexicographic order and to insert them in L;.4. Spills effectively move a large portion of keys from
one level to the next. This batching of insert operations results in amortizing device I/Os over
multiple keys due to the lexicographic retrieval of L; keys: Kreon fetches a leaf of L;;; once and
performs all updates in the batch related to this leaf before writing it back to storage. Furthermore,
Kreon spills involve only metadata while data remain in the append-only log. Compared to LSM-
Tree based key-value stores [31, 52, 68], where compactions move and reorganize the actual data
as well, this reduces overhead at the expense of leaving unorganized data on the device.
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During spills, Kreon produces random and relatively small read requests (4 KB) for leaves of
L;+1. However, due to the use of Copy-on-Write in Kreon (Section 3.4) writes to the next level
happen always to newly allocated blocks within contiguous regions of the device, which results in
efficient merging of write I/Os into larger requests. Additionally, during spills, Kreon creates many
concurrent I/Os by using multiple spill threads.

For spills to be effective, each level needs to be able to buffer a substantial amount of keys
compared to the size of the lower (and larger) level, similar to compactions in LSM-Tree. We
determine empirically that buffering about 5-10% of the metadata of the next level (key-value pairs
themselves are not part of the indexes) results in effective amortization of I/O operations. This
growth factor of 10-20x between successive levels refers only to metadata and depends also on the
distribution of the inserted keys. Zipf-like distributions, that are considered more typical today
compared to uniform, behave well with buffering a (relatively) small percentage of the next level.
We evaluate the impact of the growth factor in Section 4.5.

To achieve bounded latency for inserts during spills, Kreon allows inserts to L, to be performed
concurrently with spills, as follows. It creates a new L tree where it performs new inserts, while
spilling from L, to L;. Pages freed from the spill operation can be reused by the new L; index.
Therefore, L grows at the same rate as L shrinks. Freeing pages from the old index and adding
them to the new index involves memory unmap and remap operations (via kmmap) but no device
I/0.

3.2.2  Device Layout and Access. Kreon manages storage space as a set of segments. Each segment
is a contiguous range of blocks on a device or a file. To further reduce overhead we access devices
directly rather than use a file system in between. Our measurements show that files result in a
5-10% reduction in throughput due to file system overhead. Each segment hosts multiple regions
and it has its own allocator to manage free space.

Kreon’s allocator stores its metadata at the beginning of each segment, which consists of a
superblock and a bitmap. The superblock keeps pointers to the latest consistent state of the segment
and its regions. The bitmap contains information about the allocation status (free or reserved)
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of each 4 KB block. The bitmap is accessed directly via an offset and at low overhead, while for
searches we use efficient bit parallel techniques [13].

Kreon allocates space eagerly for regions in large units, currently 2 MB, consuming them incre-
mentally in smaller units. This approach avoids frequent calls to the allocator that is shared across
regions in each segment. It also improves average write I/O size by letting each region grow in a
contiguous part of the device.

Similarly, the key-value log in Kreon is organized in large chunks, also 2 MB. At the start of each
chunk we keep metadata about the garbage bytes as done in other systems [59]. Delete operations
update the deleted bytes counter of the corresponding chunk. When this counter reaches a threshold
the valid key-value pairs are moved to the end of the log. We locate these keys in the index via
normal lookups and we update the leaf pointers accordingly. Finally, we release the chunk to be
available for subsequent allocations.

3.2.3  Partial Reorganization. Scan operations in Kreon for small key-value pairs (less than 4 KB)
produce read amplification due to page size access granularity. To address this, Kreon reorganizes
data during scan operations, at leaf granularity. Reorganization takes place only for L > 1 leaves,
since Ly leaves are always in memory. During reorganization the key-value pairs belonging to the
same leaf are written in a continuous region of the key-value log and their previous space is marked
free. The reorganization criterion is currently based on a counter per leaf, which is incremented
every time a leaf is written. During scans, if this counter exceeds a threshold (currently, half the
leaf capacity) the leaf is reorganized and the counter is reset. We leave as future work additional
adaptive policies for data reorganization.

3.24  Number of Levels. In our projected work, we claim that two levels in Kreon are adequate
for most practical cases, given current and projected DRAM and Flash density and cost. If we
assume a growth factor R of about 10-20x between levels, we can calculate the dataset that can
be handled with M bytes of memory devoted to Lj, which needs to fit in memory. If we assume
that space amplification in B trees is 1.33 [47] and N keys are buffered in L, then the size of Ly is
M = 1.33 % N * P, where Py is the size of the metadata for each key (pointer and prefix). Kreon
uses 20 bytes of metadata for each key, which results in M = 26 = N. Similarly, the size of the
dataset is D = R« N = (S + S,), where Si and S, are the size of the keys and values respectively,
in the dataset. If we conservatively assume R = 10, Sy = 10, and S, = 100, then D = 1100 = N and
M/D = 0.02. However, more typical sizes for keys and values are Sy = 20 and S, = 1000. If we
also assume R = 20, then D = 20600 * N and M/D = 0.001. Assuming that the cost ratio of DRAM
over Flash is about 10x per GB, then the cost of DRAM for L, in a 2-level Kreon configuration is
conservatively 20% (M/D=0.02) cost of Flash to store the data and more realistically 1% (D/M=0.001)
or less.

Similar to our analysis, previous work has claimed that three levels are adequate for most
purposes [52, 68]. However, in previous cases the index contains the key-value pairs as well, while
in Kreon key-value pairs are placed in a separate log, further reducing the index size. Finally, if two
levels are not adequate, Kreon introduces additional levels to the hierarchy. In this case however,
there will be a need to also use bloom filters for avoiding out of memory lookups for all levels,
similar to other systems [23, 31, 68].

3.2.5 Deletes, Updates, Garbage Collection. In this section we describe the design of delete
operations and the associated garbage collection mechanism in Kreon. We use the algorithm
proposed by Bayer et al. [8, 42] to implement deletes for the B-tree, as follows.

During a delete operation, Kreon searches all levels to delete every instance of the key since, due
to updates, a key may be present at multiple levels. After locating a key within a level, we remove
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its associated metadata from the corresponding leaf (prefix, pointer). If the node underflows (fewer
keys than half of maximum leaf capacity) we perform the appropriate rebalance operations (merge,
rotate). During deletes and updates the key-value pair is removed or updated accordingly from the
index and no writes occur in the log.

Deletes, similar to updates, produce variable size chunks of free space in the key-value log.
Kreon implements a garbage collection (GC) mechanism to reclaim free space in the log similar
to Atlas [48] and WiscKey [54]. In Kreon we use a dedicated GC thread which is invoked either
synchronously when the system is under capacity pressure to reclaim space for issued operations
or asynchronously, after a time interval. This is configurable and in our case we provide both an
aggressive and a lazy policy. The aggressive policy invokes the GC thread every 30 seconds to
reclaim the space as soon as possible, while the lazy invokes the daemon every 20 minutes. The GC
thread scans the segments of the log and uses Kreon’s index to check which entries in the segment
are valid.

The GC thread appends the valid key-value pairs at the end of the log and updates their locations
in the index. After this step we reclaim the space of the segment. During this move operation of
valid keys at the end of the log, there is a case where a key could be simultaneously updated. We
detect this by comparing the pointer stored in the index with the address of the key-value pair in
the log. If we identify that the new key is the same as a key that is being updated then we abort the
(re)insertion of the key.

3.2.6 Single-Region Scalability. Within each region, the original version of Kreon [62] supports
a single-writer/multiple-readers concurrency model. Readers operate concurrently with writers
using Lamport counters [49] for each tree node. Furthermore, it uses a single lock per region for
writers.

To increase concurrency for writers we use the first two protocols of Bayer et al. [9], as described
in Section 2.2. In the common path we use the second protocol which allows higher concurrency in
the index nodes, compared to the first protocol, as follows.

Each traversal from the root to a leaf node uses the second protocol. If a node in this traversal is
full, we retry the traversal using the first protocol to get exclusive access (write lock). Afterwards,
we split the full node and rebalance the tree.

The combination of the two protocols allows Kreon to scale well with increasing the number of
threads, within a single NUMA node. With multiple NUMA nodes, the lock of the root node becomes
the bottleneck and limits scalability. Figure 7b shows that going from 16 threads (1 NUMA node) to
32 threads (2 NUMA nodes) does not provide any performance improvement. The bottleneck in
this case is the atomic increment operation used for the read locks. Related work [20] has shown
that even read locks limit scalability in NUMA servers.

To enable better scalability in multiple NUMA nodes, we provide an optimistic extension of
Bayer’s protocol presented in Section 2.2. Our extension is based on the observation that rebalance
operations in the root node are not frequent.

Bayer’s first and second protocol require the following properties regarding the root node: (1) A
single thread can modify the root at any given time and (2) writers should not check a version of
the root that is in a transient state.

We achieve the same properties for root with the three following mechanisms:

(1) Root write lock: This ensures that a single thread at any given time can modify the root node.
Only the thread that modifies the root acquires this lock.

(2) Root Copy-on-Write: To avoid other writers accessing the root in a transient state we use
Copy-On-Write at the root node when a modification takes place. This allows concurrent
writers to always access the root in valid state.
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(3) Lamport counters: This mechanism allows other concurrent writers to detect that root is in
transient state due to modification and retry the operation.

It is important to notice that in the case of a single NUMA node, this mechanism incurs higher
overhead compared to acquiring a read lock. On the other hand, this overhead is negligible as root
rebalance operations are infrequent.

Finally, our protocol can be applied to other B-tree designs as well. The only requirement is to
use a top-down approach to acquire locks (i.e. from root to leaves), similar to Foster B-tree [36]
which additionally increases concurrency during leaf split operations.

3.3 Memory-Mapped I/O

Most key-value stores and other systems that handle data use explicit I/O to access storage devices
or files with read/write system calls. In many cases, they also employ a user-space cache as
part of the application to minimize accesses to storage devices and user-kernel crossings for
performance purposes. The use of a user-space cache is important to avoid frequent system calls
for lookup operations that need to occur for every data item, regardless if it eventually hits or
misses. However, even the use of an application user-level cache incurs significant overhead in the
common path [38, 39, 61].

The use of memory-mapped I/O in Kreon reduces CPU overhead related to the I/O cache in three
ways: (a) It eliminates cache lookups for hits by using valid virtual page mappings. Memory-mapped
I/O does not require cache lookups because virtual memory mappings distinguish data that are
present in memory from data that are only located on the device. All device data are mapped to
the application address space but only data that are present in memory have valid virtual memory
mappings. Accesses to data that are not present in memory result in page faults that are then
handled by mmap. Given that many operations in key-value stores, such as get operations with a
Zipf distribution, complete from memory, Kreon avoids all related cache lookup overheads. (b) There
is no need to copy data between user and kernel space when performing I/O. Pages used for data
in memory are used directly to perform I/O to and from the storage devices. (c) There is no need to
serialize/deserialize data between memory and the storage devices. Finally, memory-mapped I/O
uses a single address space for both memory and storage, which eliminates the need for pointer
translation between memory and storage address spaces and therefore, the need to serialize and
deserialize data when transferring between the two address spaces.

3.3.1 Kreon’s Memory-Mapped /0. Kreon provides its own custom memory-mapped I/O path
to address the shortcomings of mmap in Linux.

First, in mmap there is no explicit control over data eviction, as with an application-specific
cache. Linux uses an LRU-based policy, which may evict useful pages, for instance, pages of L,
instead of L pages. Ly has to reside in main memory to amortize write I/O operations. Linux mmap
does not provide a mechanism to achieve this. A possible solution is to lock important pages with
mlock. However, Linux does not allow a large number of pages to be locked by a single process
because this affects other parts of the system.

Second, each write operation in an empty page is effectively translated to a read-modify-write
because mmap does not have any information about the status (allocated or free) of the underlying
disk page and the intended use. This results in excessive device I/O. Instead, if applications can
inform mmap whether a page contains garbage and will be written entirely, mmap can map this
page without reading it first from the device, eliminating unnecessary read traffic.

Third, mmap employs aggressive evictions based on memory usage and time elapsed since pages
marked as dirty to free memory and avoid starving other system components. Mapping large
portions of the application virtual address space creates pressure to the virtual memory subsystem
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Fig. 4. The main structures of kmmap.

and results in unpredictable use of memory and bursty I/O. Furthermore, eager and uncoordinated
evictions do not facilitate the creation of large I/Os through merging. Empirically, we often observe
large intervals (of several 10s of seconds) where the system freezes while it performs I/O with
mmap and applications do not make progress. Furthermore, we observe similar behaviour with
msync. This unpredictability and large periods of inactivity are an important problem for key-value
stores that serve data to online, user-facing applications.

To overcome these limitations, we implement a custom mmap, as a Linux kernel module, called
kmmap. Figure 4 shows the overall design and data structures of kmmap.

Kmmap bypasses the Linux page cache and uses a priority-based FIFO replacement policy. As
priority we define a small, per-page number (0 to 255). During memory pressure, a page with a
higher priority is preferred for eviction. Priorities are kept only in memory and are set explicitly by
Kreon with ioctl calls. Priorities are set as follows: Kreon assigns priority 0 to index nodes of Lo, 1
to index nodes of Ly, 2 to leaf nodes of Ly, and 3 to the log. L, fits in memory and it will not be
evicted. Generally if we have more than two levels Ly always uses priority 0 and the log maximum
priority. We calculate the priority of level Ly as (2 * N — 1) for index nodes and (2 = N) for leaves.

To increase parallelism, kmmap organizes memory in independent banks, similar to DI-MMAP [28].
Pages are mapped to banks by hashing the page fault address. To place consecutive pages in the
same bank, the page fault address is first shifted. Unlike DI-MMAP, kmmap uses fine-grain locking
inside banks, which results in higher concurrency and eliminates periods of inactivity (long freezes).

When Kreon accesses a page (for read or write), that does not reside in main memory, a page
fault occurs. On a page fault, kmmap retrieves a free page from an in-memory list (Free Page Pool),
it reads the data from the device if required, and finally enqueues the page to the Primary Queue
based on its priority. kmmap keeps a separate FIFO queue per priority inside the Primary Queue.
In the case where the Primary Queue is full of pages, it dequeues a fixed number of entries for
batching purposes, with preference to entries with higher priority. Then it unmaps them from the
process address space and moves them into the Eviction Queue. The Eviction Queue is organized as
an in-memory red-black tree structure, keeping keys sorted based on page offset at the device. For
evictions, it traverses the Eviction Queue and merges consecutive pages to generate as large I/Os as
possible. It keeps dirty pages that belong to the Primary Queue or the Eviction Queue in another
in-memory red-black tree structure (Dirty Tree) sorted by their device offset. The Dirty Tree is used
by msync, to avoid scanning unnecessary (clean) pages.

Kmmap compared to mmap keeps pages in memory for a longer period of time and does not
evict them, unless there is a need to do so. This allows Kreon to generate larger I/Os during spill
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operations by merging more requests. When a spill is completed, Kreon sets the priority of pages
from the previously spilled Ly to 255 (smallest priority) so they get evicted as soon as possible.

To avoid unnecessary reads that occur when a new page is written in Kreon, kmmap detects
and filters these read-before-write operations, whereas write and read-after-write operations are
forwarded to the actual device. To achieve this, it uses an in-memory bitmap, which is initialized
and updated by Kreon via a set of ioctl calls. The bitmap uses a bit per device block, so a 1 TB SSD
requires 32 MB of memory for the bitmap.

Kmmap provides a non-blocking msync call that allows the system to continue operation while
pages are written asynchronously to the devices. For this purpose we keep a timestamp for each
page that indicates when it became dirty. To write dirty pages, we iterate the Dirty Tree and write
only pages with timestamp older than the timestamp of msync. We use fine grain locking in Dirty
Tree and we allow to add new dirty pages into it during msync. However, there can be pages that
are already dirty and changed after msync, which should not be written. Kreon uses Copy-On-Write
to ensure that after a commit dirty pages will not change again as we need to allocate new pages.

Finally, Kreon significantly reduces unpredictability with respect to memory management during
system operation by limiting the maximum amount of memory it occupies throughout its operation.
It uses a configuration parameter to calculate the size of Ly in memory and based on this it
preallocates all memory-mapped I/O structures.

3.4 Persistence

Kreon uses Copy-On-Write (CoW) [66] to maintain its state consistent and recoverable after failures.
Kreon’s state includes the data section of each segment (metadata and data of the tree) and the
allocator metadata. To persist a consistent version of its state Kreon provides a commit operation.
This operation first writes the dirty (in-memory) data into the device and then switches atomically
from the old state to the new state. More specifically, Kreon stores a pointer to the latest persistent
state in the superblock. At the end of a commit operation, Kreon updates this pointer to the newly
created persistent state which becomes immutable. In case of a failure, the new state that is not
committed will be discarded during startup, resulting in a rollback to the last valid state.

In Kreon we use CoW for different purposes at L, and the rest of the levels. The index of all levels
except Ly is kept on the device and only brought to memory on demand. Therefore, typically, only a
small part of these indexes is in memory. For these indexes, Kreon uses CoW to ensure consistency
of the index on the device during failures. These levels are only written to the device during spills.
Therefore, the only time when commits occur (besides Ly), is at the end of each spill operation.

Ly is different and can always be recovered by replaying a subset of the key-value log. This subset
is always the latest portion of the log and is easy to identify via markers placed in the log during
the spill operation from Ly to Ly. Therefore, after a failure, Ly can be reconstructed. However, L
can grow significantly due to the large amount of memory available in modern servers. Kreon
uses CoW to checkpoint Ly to the device and to reduce recovery time. Therefore, Kreon’s commits
of Ly are not critical for recovery. Ly checkpoints do not have to be very frequent. Infrequent L,
commiits do not lead to data loss because the Ly index can be reconstructed through the replay of
the key-value log. The log is written to the device more frequently, when a log segment (2 MB)
becomes full.

Essentially, Kreon uses Ly commits at a coarse granularity to improve recovery time, without
however, a negative impact on the recovery point. The tradeoff introduced is that commits incur
overhead during failure free operation. Overall, we expect that Kreon Ly commits will be issued
periodically at a time scale of minutes, which has a low impact on performance. Section 4.5 evaluates
commit overhead in Kreon.
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3.5 RDMA Client-Server Protocol

During the past decade network technology has evolved to provide link speeds up to 100 Gbps. Along
with these advancements, the demand for high throughput and ultra-low latency has also grown in
datacenter applications. However, TCP/IP protocol fails to deliver this network performance. As
shown in previous works, TCP/IP incurs high CPU overhead [33, 55] and as a result few processing
resources are left for applications [11]. This is because TCP/IP requires extensive computing power
due to the its processing in the host CPU and it inherently incurs high overheads due to its streaming
semantics.

On the contrary, RDMA protocol can meet those network requirements, since it provides low
CPU overhead, ultra-low latency and high throughput. To achieve these, RDMA provides zero-
copy transfers by allowing one computer to directly access the memory of a remote computer
without involving the operating system at any host. Previous work [27, 43, 44, 57] has shown that
RDMA-based protocols offer significant gains compared to TCP/IP for in-memory key-value stores.

In Kreon we implement an RDMA protocol for communication between clients and servers. In
this work we investigate the portion of cycles a server devotes to network processing when using
RDMA relative to the portion of cycles devoted to index manipulation and device I/O.

Previous work for in-memory, hash-based key-value stores has removed server involvement
entirely by using RDMA read operations [27, 57, 75]. This is possible because they use a simple
index, so clients can access data with a single remote read. However, Kreon and most persistent key-
value stores use more complex index structures to access data that also support scans and requires
index traversals. Thus, direct access from clients would result in several round-trip messages. For
this reason, Kreon uses server-side processing for client requests. In particular, it uses a single
RDMA-based round-trip message for each common data path operation (get, put, scan). Kreon
uses RDMA writes for all messages, that allow arbitrary key and value sizes, unlike RDMA send
messages that require a maximum fixed size [44]. Note that in our implementation, RDMA reads
would provide worst performance than RDMA writes just because several RDMA reads should be
posted to locate the key-value pairs remotely.

Kreon uses the following buffer management scheme for RDMA writes. RDMA operations need
pre-registered memory regions in both the local and remote node to exchange data between two
nodes. Nodes register two memory regions per connection: One for posting data to be sent to the
remote peer and the other for receiving data from the remote peer. The receiving region mirrors
the contents of the sending region in the remote peer. Both regions are split into blocks of 1 KB,
with each receiving block being a mirror of a sending block. Each message uses one or more
consecutive 1 KB mirrored blocks. The sender reserves mirrored blocks from its sending memory
region, resulting indirectly in a reservation of the same mirrored blocks on the receiving memory
region of the remote peer.

Regarding messages, each message is composed of a header and a payload. The header includes
the request type (get, put or scan), operation ID, message size, ID of the region and number of
operations included. The payload contains the key value pairs to insert (put), or the keys to lookup
(get and scan) from client to server or the values found from server to client. Client inserts keys
and values (if any) directly to the mirrored blocks, while server uses the mirrored blocks to issue
the corresponding operation to Kreon, avoiding an extra memory copy.

To avoid interrupts, we use polling at the receive path for detecting arrival of new messages.
Reservation of mirrored blocks is always done sequentially so messages arrive in consecutive blocks.
Since our RDMA messages are variable size, we use two locations for polling, one for detecting
arrival of the header and identifying message length and one for detecting arrival of the payload.
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Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D
E
F

95% reads, 5% inserts
95% scans, 5% inserts
50% reads, 50% read-modify-write
G 100% scans
Table 1. Workloads evaluated with YCSB. All workloads use a query popularity that follows a Zipf distribution
except for D that follows a latest distribution as defined by YCSB.

Note that RDMA requests follow the same path as local requests, for Kreon there is no difference
between a local request or a RDMA request.

4 EXPERIMENTAL RESULTS

In this section we evaluate Kreon against RocksDB [30, 31]. Our goal is to examine the following
aspects of Kreon:

(1) What is the efficiency in cycles/op achieved by Kreon compared to LSM-based key-value
stores? Does higher efficiency come at the cost of worse absolute throughput or latency?

(2) How much does the new index design and memory-mapped I/O contribute to reducing
overheads?

(3) How does Kreon improve I/O amplification? How much does it increase I/O randomness?

(4) How do the growth factor across levels and L, checkpoint interval affect performance?

(5) How much is the overhead of RDMA-based communication between clients and a server
compared to I/O and index management?

(6) How much does Kreon improve the performance and efficiency in a production grade NoSQL
system (MongoDB)?

Next, we discuss our methodology and each aspect of Kreon in detail.

4.1 Methodology

Our testbed consists of a single server which runs the key-value store and the YCSB client. The
server is equipped with two Intel(R) Xeon(R) CPU E5-2630 v3 CPUs running at 2.4 GHz, with 8
physical cores and 16 hyper-threads, for a total of 32 hyper-threads and with 256 GB DDR4 at
2400 MHz. It runs CentOS 7.3 with Linux kernel 4.4.44. During our evaluation we scale-down DRAM
as required by different experiments. The server has six Samsung 850 PRO 256 GB SSDs, organized
in a RAID-0 using Linux md and 1 MB chunk size. The systems are connected with Mellanox
ConnectX-3 Pro 40 Gbps Ethernet cards through a 40 Gbps switch. In the case of MongoDB we use
two separate clients. Each of them is equipped with two Intel(R) Xeon(R) Processor E5-2620 v2
CPUs running at 2.1 GHz with 6 physical cores and 12 hyper threads, for a total of 24 hyper-threads
and with 128 GB DDR3. They also run CentOS 7.3 with Linux kernel 3.10. Clients access MongoDB
server through TCP/IP MongoDB client driver. To generate enough load for the server we run 8
separate YCSB processes on each client, each of them with 8 threads.

We use RocksDB! v5.6.1, on top of XFS with disabled compression and jemalloc [29], as recom-
mended. We configure RocksDB to use direct I/O because we evaluate experimentally that in our

1Options file: https://goo.gl/NJNLNTr.
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Fig. 5. Efficiency of Kreon and RocksDB in cycles/op.

testbed results in better performance. Furthermore, we use RocksDB’s user-space LRU cache, with
16 and 192 GB depending on the experiment.

Kreon is build from scratch in C. To remove JNI ovehreads in the Java version of YCSB, we use a
C++ version of YCSB [65] with the recommended workloads proposed by YCSB [21, 22]. Table 1
summarizes these workloads. We add a new workload named G which is similar to E but consists
only of scans. In all cases we use 128 YCSB threads for each client and 32 regions.

We emulate two datasets a small dataset that fits in memory and a large dataset that does not by
using two different memory configurations for our system. In the small dataset we boot the server
with 194 GB of memory, 192 GB for key-value store and 2 GB for the OS. To further stress I/O for
the large dataset, we boot the server with 18 GB of memory, 16 GB for the key-value store and
2 GB for the OS. The dataset consists of 100M records and requires about 120 GB of storage. YCSB
by default generates 10 columns for each key. We keep these 10 columns inside a single value. We
use a 100M keys (recordcount and operationcount equals to 100M) * 10 columns which results in 1
billion columns.

In the small dataset, both the key-value log and the indexes fit in memory, so I/O is generated by
commit operations. In the large dataset, neither the key-value log nor the indexes fit in memory
and only L, is guaranteed to reside in memory. Therefore, the small dataset demonstrates more
clearly overheads related to memory accesses whereas the large dataset stresses the I/O path.

We calculate efficiency in cycles/op as follows:

i
x S22 % cores

average_ops ’
s

CPU _utilization
100

cycles/op =

where CPU _utilization is the average of CPU utilization among all processors, excluding idle and
I/O wait time, as given by mpstat. As cycles/s we use the per-core clock frequency. average_ops/s is
the throughput reported by YCSB, and cores is the number of system cores including hyperthreads.

4.2 CPU Efficiency and Performance

We evaluate the efficiency of Kreon in terms of cycles/op required to complete each operation,
excluding YCSB overhead. To exclude the overhead of the YCSB client, we profile the average
cycles/op required by YCSB and we subtract this overhead from the overall value for both RocksDB
and Kreon.

Figure 5 shows our overall results for Kreon and RocksDB. For the small dataset Kreon requires
8.3x, 1.56x%, and 1.4x fewer cycles/op for Load A, Run C, and Run G, respectively. For the large dataset
Kreon requires 5.82x, 1.2x, and 1.18x fewer cycles/op for Load A, Run C, and Run G, respectively. In
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Fig. 6. Efficiency and throughput improvement of Kreon compared to RocksDB for all YCSB workloads.
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addition, for the small dataset and Load A we compare Kreon when using kmmap and when using
vanilla mmap. Although we do not show these results for space purposes, using kmmap, Kreon
achieves 1.47x fewer cycles/op compared to vanilla mmap, indicating the importance of proper and
customized memory-mapped I/O for key value stores.

In terms of absolute numbers, we see that Kreon requires 21, 35, and 241 kcycles/op for each of
Load A, Run C, and Run G for the small dataset and 25, 64, and 354 kcycles/op for each of Load A,
Run C, and Run G for the large dataset.

We now show results from a complete run for all YCSB workloads. We run the workloads in
the recommended sequence [21]: Load the database using the configuration file of workload A,
run workloads A, B, C, F, and D in a row, delete the whole database, reload the database with the
configuration file of workload E and finally run workload E.

For both the small and large dataset, Figure 6a shows the improvement in efficiency compared
to RocksDB, whereas Figure 6b shows the improvement in throughput. Regarding efficiency,
Kreon improves RocksDB efficiency, on average, by 3.4x and 2.68x, for the small and large dataset,
respectively. Regarding throughput, the improvement in Kreon compared to RocksDB is, on average,
4.72x and 2.85x for the small and large datasets, respectively.

4.2.1 Scalability analysis. In this section, we evaluate the scalability of Kreon concurrency
protocols described in Section 3.2.6. We show that our root optimization is essential to achieve a
scalable performance in NUMA servers. In this case, we run Load A and we vary the number of
threads from 1 to 32. We use the small dataset that fits in memory because we want to show the
CPU synchronization overheads.
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Figure 7a shows throughput scalability of Bayer’s first protocol which acquires write locks in
the whole path from the root to the leaves. The “Ist protocol” curve shows Bayer’s first protocol
whereas the “Ist protocol + Opt” curve uses same protocol and in addition the optimization for the
root, as described in Section 3.2.6. We observe from the “Ist protocol” curve that throughput drops
after 4 threads because of the write lock that serializes operations in the root node. On the other
hand, from the “ Ist protocol + Opt” curve we observe that when we replace the write lock of the
root with our root optimization throughput improves from 3x up to 10x. In this case we enable
concurrency in the root node and inserts that do not conflict in the traversal to a leaf node proceed
concurrently.

Figure 7b shows the same experiment with Bayer’s second protocol which acquires read locks
in the internal nodes and write lock only at the leaf. The “2nd protocol” curve is Bayer’s second
protocol whereas “2nd protocol + Opt” is the same protocol using our optimization for the root
node. Figure 7b shows that Bayer’s second protocol scales well within a single NUMA node (up to
16 threads). Using the second NUMA node (32 threads), Kreon fails to scale due to the root node
read lock excessive traffic on the NUMA interconnect. With “2nd protocol + Opt’, the traffic on
the NUMA interconnect decreases as we remove the single atomic operation from the root. This
improves throughput by 66% using 32 threads. Using profiling and 32 threads we see that our
mechanism in the root node is not the bottleneck. In this case, the performance is limited by the
log lock, which writers use to append atomically. This lock takes about 50% of the execution time.
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Fig. 8. Bayer’s protocols scalability compared to Kreon and RocksDB.

Figure 8 shows the scalability for RocksDB and three versions of Kreon: Kreon that uses a
single write lock, “Kreon+1st+2nd” that uses Bayer’s second concurrent protocol without the root
optimization, and “Kreon+1st+2nd+Opt” that uses Bayer’s second protocol with the root optimization.
We see that “Kreon+1st+2nd+Opt” scales better compared to “Kreon+1st+2nd” up to 32 threads.
Kreon with a single lock does not scale with increasing the number of threads. Finally, using 32
threads “Kreon+1st+2nd+Opt” achieves 2.65X more throughput compared to RocksDB.

4.2.2 Latency analysis. First, we examine the average latency per operation for the small dataset.
For Load A, RocksDB achieves 1162 ps/op, Kreon with vanilla mmap achieves 346 us/op, and Kreon
with kmmap achieves 72 us/op. This shows that kmmap provides significant reduction in latencies
compared to vanilla mmap. For Run C, RocksDB achieves 174 ps/op, Kreon with vanilla mmap
achieves 119 us/op, and Kreon with kmmap achieves 109 ps/op. Generally, Kreon with kmmap
achieves 16.1x and 1.5x lower latency on average for Load A and Run C compared to RocksDB. For
the large dataset and Load A, RocksDB achieves 1443 ps/op, Kreon with vanilla mmap achieves
479 us/op, and Kreon with kmmap achieves 155 us/op. For Run C, RocksDB achieves 182 us/op,
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Fig. 10. Tail latency for Load A and Run C for RocksDB, Kreon with vanilla mmap, and Kreon with kmmap
using the large dataset.

Kreon with vanilla mmap achieves 172 ps/op, and Kreon with kmmap achieves 170 ps/op. We see
that with the large dataset, Kreon provides similar improvements as the small dataset.

Figure 9 shows the tail latency for Kreon using both kmmap and vanilla mmap and RocksDB
with the small dataset. For Load A, for 99.99% of requests, Kreon with kmmap achieves 393x lower
latency compared to RocksDB. Furthermore, kmmap results in 99x lower latency compared to
vanilla mmap. In our design we remove blocking for inserts during msync and during spilling of
L. Unlike Kreon, RocksDB blocks inserts during compaction operations for longer periods. For
Run C, Kreon results in almost the same latency with and without kmmap and about 2x better than
RocksDB. This is because in a read-only workload most overheads come from the data structure, as
we use a dataset that fits in memory and removes the need for I/O. In the case of RocksDB this
overhead includes also a cache lookup while in Kreon it only accesses already mapped memory.
The use of mmap and kmmap results in almost the same performance as this experiment does not
stress memory-mapped I/O path.

Figure 10 shows the tail latency for Kreon using both kmmap and vanilla mmap and RocksDB
and with large dataset. Using Load A, for 99.99% of requests, Kreon with kmmap achieves 88x
lower latency compared to RocksDB. Furthermore, kmmap results in 26x lower latency compared
to vanilla mmap. For Run C, Kreon results in almost the same latency with and without kmmap
and about 54% better than RocksDB. Using both Load A and Run C we see similar behaviour as in
the small dataset. This shows that out approach provides better latency (both average and tail),
regardless of the ratio cache to workload size.
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Fig. 11. Throughput for Kreon and RocksDB in ops/s.

4.2.3  Very large dataset. To examine Kreon’s behavior with a very large dataset we run Load A
using 6 billion keys with one column per key (key size of 30 bytes and value size of 100 bytes). For
this experiment we use 192 GB of DRAM for both Kreon and RocksDB. Kreon reduces cycles/op by
8.75%, increases ops/s by 12.11x, reduces write volume by 4.25x, and read volume by 3.14x.

4.2.4  Absolute operation throughput. Next, we examine if Kreon’s increased efficiency in cy-
cles/op comes at the expense of reduced absolute performance. This is important for understanding
if Kreon trades device and host CPU efficiency in the right manner. For Kreon and RocksDB, Fig-
ure 11 shows the throughput (ops/s), achieved by YCSB. For the small dataset, Kreon achieves
14.35%, 1.24x, and 1.25x more ops/s for Load A, Run C, and Run G, respectively.

For the large dataset, Kreon achieves 5.33x and 1.05x more ops/s for Load A and Run C, respectively,
than RocksDB. However, Kreon is 2% worse for Run G. In this case, both RocksDB and Kreon are
limited by device throughput and this is the reason that both systems are comparable. On the other
hand, Kreon results in much lower CPU utilization: on average Kreon has a utilization of 13.8%
while RocksDB has a utilization of 39.5%. Therefore, Kreon is able to support more clients given an
adequate number of storage devices.

For the small dataset and Load A, we compare Kreon with kmmap and with vanilla mmap. We
see that kmmap improves throughput by 4.34x compared to vanilla mmap.

4.3 Execution Time Breakdown

In this section we examine the main components that contribute to overhead in Kreon and RocksDB.
Our purpose is to identify what are the main sources of improvement in Kreon compared to RocksDB
and what are the remaining sources of overhead.

We examine two workloads a write-intensive (Load A) and a read-intensive (Run C) using both
the small and large datasets. We profile Load A and Run C workloads and we use stack traces
from perf and Flamegraph [37] to identify where cycles are spent. We divide overhead in the
following components: index operations (updates/traversals for put/get operations), caching, I/0,
and compaction/spill. I/O refers to explicit I/O operations in RocksDB and memory-mapped I/O in
Kreon. Caching refers to the cycles needed for cache lookups, fetching new data for misses and
page evictions when the cache becomes full. RocksDB uses a user-space LRU cache whereas in
Kreon cache resides in kernel-space as part of kmmap.

Table 2 shows the breakdown for the write-intensive Load A workload. The number of cycles
used by the YCSB client is roughly the same in all cases. In the small workload, index manipulation
incurs about 44% lower overhead in Kreon (~13K cycles/op in Kreon vs. 24K cycles/op in RocksDB).
Caching overhead for the write-intensive workload is lower for the large dataset whereas for the
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keycles/ Load A (16GB) Load A (192GB)
operation RocksDB  Kreon Impro RocksDB  Kreon Impro
ent vement
index 24.15 13.46 44% 26.76 13.1 51%
cache 0.33 0.56 -69% 0.82 0.45 45%
I/O pfault 2.92 5.84 1.66 2.61
. 61% 80%
I/O syswrite 12.20 0 11.91 0
compaction/spill ~ 63.41 0.78 98% 60.87 0.64 98%
Total 103.1 20.64 79% 102.02 16.8 83%
YCSB 26.67 25.34 - 22.79 21.37 -

Table 2. Breakdown of cycles per operation for workload Load A (write only). Numbers are in kcycles.

keycles/ Run C (16GB) Run C (192GB)
i I I
operation RocksDB  Kreon mpro RocksDB  Kreon mpro
vement vement
index 4.87 4.28 12.3% 25.59 10.29 59%
cache 8.61 0.41 95% 9.79 0.74 92%
/0 pfault 0.12 3.16 % 0.54 5.9 939
I/O sysread 2.86 0 7.21 0
Total 16.46 7.85 52% 43.13 16.93 60%
YCSB 13.9 12.11 - 54.04 53.11 -

Table 3. Breakdown of cycles per operation for workload Run C (read only). Numbers are in kcycles.

small dataset Kreon spends more 0.23 Kcycles/op. For I/O Kreon requires 61% fewer cycles. For
compaction/spill Kreon dramatically reduces the cycles required per operation from 63.41K to 0.78K.
In the large workload, index manipulation requires 51% fewer cycles in Kreon (from 26K to 13K)
and for I/O 80% fewer cycles. Similarly to the small dataset, Kreon significantly reduces the number
of cycles per operation for compaction/spill from 60.87K to 0.64K.

Table 3 shows the breakdown for the read-intensive workload (Run C benchmark). In the small
dataset, index manipulation incurs 12% fewer cycles (from 4.87K in RocksDB to 4.28K in Kreon).
Caching overhead is reduced by 95% (from 8.61K cycles/op in RocksDB to 0.41K cycles/op in Kreon)
whereas I/O requires 6% more cycles in Kreon. In the large dataset, index manipulation overhead is
reduced by 59% in Kreon, caching overhead by 92%, and I/O by 23%.

Overall, we see that Kreon’s design significantly reduces overheads for index manipulation, spills,
and I/O. We also see that all proposed mechanisms for indexing, spills that involve only metadata,
and memory-mapped I/O-based caching, have important contributions. Finally, we see that in
Kreon the largest number of cycles is consumed by index manipulation (up to 13K cycles/op) both
for both datasets in both workloads and secondarily by page faults (up to 5.9K cycles/op).

4.4 1/0 Amplification and Randomness

In this section we evaluate how Kreon reduces amplification at the expense of reduced I/O size and
increased I/O randomness. To reduce amplification, Kreon generates by design smaller and more
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Load A RunC RunG

RocksDB-Read 669 138 296
Kreon-Read 112 127 1237
RocksDB-Write 869 0 8
Kreon-Write 221 0 139

Table 4. Total 1/0 volume (in GB) for Load A, Run C, and Run G using the large dataset.

R, R, R,

RocksDB  0.001780 0.003878 0.000112
Kreon 0.009851 0.033648 0.000325

Table 5. 1/0 randomness using the large dataset and Load A. The higher the value of R, the more random the
I/O pattern.

random I/Os compared to RocksDB and traditional LSM-Trees. We measure the average request
size for Load A using the large dataset. For writes, Kreon has an average request size of 94 KB
compared to 333.2 KB for RocksDB. However, even at 94 KB, most SSDs exhibit high throughput
with a large queue depth (Figure 1). For reads, Kreon produces 4 KB I/Os, compared to 126 KB for
RocksDB. Because of compactions, RocksDB reads large chunks of data in order to merge them.
This results in a large request size but it also results in high read amplification, 4.8x more data
compared to Kreon.

Table 4 shows the total amount of traffic to the device using the large dataset. We see that for
Load A Kreon reduces both read traffic by 5.9x and write traffic by 3.9x, while the total traffic
reduction is 4.6x. Kreon reads 1.08x less data for Run C. On the other hand, Kreon reads 4.1x more
data for Run G, due to data re-organization. This cost is related only to scans and for leaves that
are not re-organized. On the other hand, in RocksDB data reorganization takes place in every
compaction.

To examine randomness, we implement a lightweight I/O tracer as a stackable block device
in the Linux kernel that keeps the device offset and size for bios issued to the underlying device.
The tracer stores this information to a ramdisk to reduce overhead and avoid interfering with the
key-value store I/O pattern. Tracing reduces average throughput of YCSB by about 10%. We analyze
traces after each experiment and calculate a metric for I/O randomness based on the distance and
size of successive bios, as follows:

nb—
Z:Ol |bs[i + 1].of f — (bs[i].of f + bs[i].size)| + bs[i].size

R= ,
nb-1

device_size_in_pages * 3, bs[i].size
i=0

where bs is the array that contains bio information and nb its length. R is the randomness metric and
takes values between [0,1]. The larger R is, the more random the I/O pattern. Finally, we compute
three versions of R, one for all bios (R;), one for reads (R, ), and one for writes (R,,).

Table 5 shows our results for Kreon and RocksDB. For calibration purposes, we run fio with
queue depth of 1 and block size of 4 KB: a sequential pattern is 0 and a random pattern is close to
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Fig. 12. Results with varying growth factor from 1.25% to 10% (x-axis) using the large dataset.

0.33. Kreon produces overall about 5.53x more random I/O patterns than RocksDB. Reads exhibit a
larger difference in randomness, about 10x, because Kreon moves data between levels at smaller
granularity than RocksDB. For writes, Kreon exhibits a 3x more random pattern.

Overall, during inserts, Kreon reduces write traffic by 2.8x and read traffic by 4.8x. In both cases,
queue depth is about 30 on average. Figure 1 shows that, at this queue depth, commodity SSDs
achieve their maximum throughput with at 32 KB requests, so Kreon’s 94 KB write requests result
in little or no loss of device efficiency, while there is a 2.8x gain from reduced write traffic. For read
traffic, Kreon’s 4K requests result in a small percentage drop of SSD throughput at a queue depth of
32, but at a 4.8x gain in traffic. Therefore, Kreon properly trades randomness and request size for
amplification. The calculation is somewhat different for our NVMe devices, but still favorable to
Kreon.

Finally, Kreon achieves an average read throughput of 123 MB/s and an average write throughput
of 743 MB/s at an average queue depth of 21.2. On the other hand, RocksDB achieves 707 MB/s for
reads and 889 MB/s for writes at an average queue size of 26.2. In both cases queue depth is large
enough for devices to operate at high throughput, although Kreon exhibits lower throughput for
reads due to the smaller request sizes it generates. This loss of device efficiency is compensated by
the reduced amplification (by 4.6x) and the reduced CPU overhead, eventually resulting in higher
performance and data serving density.

4.5 Growth Factor and Commit Interval

An important parameter for key value stores that use multi-level indexes is the ratio of the size
between two successive levels (growth factor). The growth factor in Kreon represents the amount of
buffering that happens for inserts in one level before keys are spilled to the next level. This affects
how effectively I/Os are amortized across several inserts and reduces write amplification.

Figure 12 shows Load A with varying growth factor using the large dataset. A growth factor
of 0.1 means that L, is 10x larger than L, and therefore Ly can buffer about 10% of the keys in
L,. Figure 12b shows that a growth factor between 0.05 and 0.1 is appropriate, meaning that each
level should buffer between 5-10% of the next level. A smaller growth factor results in significant
increase in traffic and reduces device efficiency. Increasing the growth factor beyond 0.1 reduces
traffic further, however, this also requires more memory for L,. Figure 12a (right y-axis) shows that
average request size increases as buffering increases and combined with the reduced traffic, results
in increasing throughput (ops/s), as shown in Figure 12a (left y-axis).
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Fig. 14. Link throughput achieved by Kreon’s RDMA protocols with one and two clients for the small and
large datasets.

Figure 13 shows how the commit interval for L, affects ops/s, read volume, and write volume in
Kreon. For Run C the commit interval does not affect any of the metrics, therefore, we examine
only Load A with the large dataset.

Increasing the commit interval decreases the total amount of data read and written to the device.
This is due to Copy-on-Write. For each commit we create a read-only version of our tree, thus an
insert has to allocate new nodes and copy data from the immutable copy. Additionally, we see that
commit intervals longer than 120s have a small impact for read and write volume.

For throughput, a small commit interval results in larger read and write volume which reduces
performance. Interestingly, a value larger than 240 seconds reduces throughput significantly as
well. This is due to the behavior of msync. In kmmap, msync is optimized to generate many large
and asynchronous I/Os from all dirty pages, which means that it is more efficient compared to the
eviction path mmap where we evict less amount of data. Overall, we see that a good value for the
commit interval is about 2 minutes, which we use in all our other experiments.

4.6 RDMA Communication Overhead

Since key-value stores typically serve network clients, we are interested in examining the relative
overhead of RDMA-based communication compared to I/O and index management in Kreon.
Figure 14 shows the link throughput achieved by Kreon’s protocol. We see that with two clients the
throughput achieved is about 1.5 GB/s for the small dataset. Other systems [57] achieve similar
link throughput with RDMA.
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Small 1C Large 1C Small 2C

LoadA RunC LoadA RunC LoadA
Index 27.29 14.19 16.35 7.69 27.72
10 10.44 12.64 15.49 14.87 19.70
RDMA 1.75 1.77 1.22 0.89 2.17
Polling 8.96 9.82 11.01 11.03 4.30
Memory 4.13 0.07 2.80 0.04 5.16
Util. 59.11 45.20 52.02 38.45 70.33

Table 6. Percentage of CPU used in each component of Kreon.

Next, we use oprofile to obtain a breakdown of CPU utilization for the main components of
Kreon:

Index represents the cost of index-related operations, except device I/O.

IO represents the cost of I/O via kmmap.

RDMA represents communication cost, including the issue and receive paths.

Polling represents the CPU time spend in RDMA threads polling for messages.

e Memory represents the cost of memory copies used for index manipulation and RDMA-

purposes.

Table 6 shows the overhead for each component, as percentage of the CPU used by the server
for each workload, Load A and Run C, with the small and large datasets, and for both one and
two clients. For Load A, we see that generally index processing dominates and is between 16-27%
followed by device I/O, which is between 10-20%. RDMA processing overhead is about 2%. Also,
memory copies in Kreon occur only for secondary uses in general and are below 5%. For Run C,
index processing is less important, between 7-14%, device I/O importance increases and is between
12-14%, while RDMA percentage remains low and below 1.7%.

Polling for network messages takes between 4-11% of CPU utilization. Although this is a relatively
large percentage, it is due to the fact that the server is not saturated, but rather limited by device I/O
throughput. At higher utilization, the percentage spent in polling will be reduced. Nevertheless, these
numbers show that polling strategies currently employed widely in RDMA protocols [27, 44, 45, 57]
need to consider adaptive approaches to improve server efficiency.

Finally, server CPU utilization for the experiments of Figure 14 is between 38-70%. Saturating
server CPU will increase link throughput to at most 2 GB/s. Thus, a 40Gbps link roughly can
serve up to 64 cores (hyper-threads). Overall, we find that for persistent key-value stores, RDMA
processing cost is relatively low, polling for messages requires adaptive approaches, and a 40 Gbps
link is able to serve about 64 cores with Kreon.

4.7 Integration with MongoDB

In this section, we quantify the benefits in performance and efficiency of Kreon in a production
grade NoSQL system. For this reason we use MongoDB [18], a state-of-the-art general purpose,
document-based database. MongoDB offers an API for developers to use custom storage engines.
Towards this direction, MongoRocks [58] provides a layer that enables the use of RocksDB as
a storage engine of MongoDB. We also use Kreon as a storage engine of MongoDB. To achieve
this, we modify MongoRocks to use Kreon instead of RocksDB. For a fair comparison we disable
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RocksDB’s Bloom Filters and scan reorganization in Kreon. Bloom filters are not yet supported in
Kreon.

5 400 T T T T 180 T T T -
% 350 Kreon mmmmm | 160 Kreon s :::
2 300 RocksDB xxxxx | o 140 + RocksDB =228 KX
~ o o 120 | 038
< 250 3 4 ¢ 0%
< B k3 2 L &
5 IS < S =100 o
g 200 K 28 S 80 - &
P o 5 = 039
< 150 N K 1 * o2
= S IS S g 60 - %
3 100 < B B o 4 =2 4t 059
g R EE s S
£ 50 & Sl Sl s S 1 20 |- % ol
[ 0 3 ) o R kY 0 v; < ol
< <« o O L Ao w W < <« @m O L Ao W uw
o = = c c c hel c el c c c = c ke =
8 2 2 2 & @ & & § & 2 & 2 & § &

S & &£ = T 9 9 o © 9

(a) Throughput (b) Efficiency

Fig. 15. Throughput and efficiency comparison of Kreon and RocksDB in MongoDB.

Figure 15a shows the throughput for each YCSB workload, using Kreon and RocksDB as storage
engines. We observe that Kreon, improves throughput from 1.04X up to 1.2x for all workloads except
Run E, where we have about 30% lower performance. This is because we disable scan reorganization
in Kreon and we introduce random I/Os for the scans. Figure 15b shows the efficiency in terms of
cycles/op for the same workloads. Kreon requires from 0.96X up to 4.26X% less cycles/op across all
workloads.

These results show that even in a complicated production grade NoSQL system, Kreon provides
performance and efficiency benefits. On the other hand, they are less pronounced compared to our
single node evaluation as MongoDB contains significant subsystems like query engine that affect
performance.

5 RELATED WORK

Related work to Kreon falls in the following categories:

5.1 LSM-Tree based key-value stores taxonomy and optimizations

We identify the following three dimensions in the design space of LSM-Tree key-value stores
that affect I/O amplification and CPU efficiency: (1) size and placement of SSTs, (2) logical level
organization, and (3) value location. In Table 7, we present a taxonomy of existing systems based on
these dimensions. These systems, to some extend, have tried to take advantage of device properties
and improve performance.

Size and placement of SSTs: In an LSM-Tree key-value store levels are physically organized on
the device in units named Sorted String Tables (SSTs). Their size is typically large (order of MBs)
because large SSTs guarantee maximum device throughput, eliminating the effects of the I/O pattern
(sequential or random) and metadata I/Os, as metadata are small and fit in memory. Equivalent, small
and sequentially placed SSTs on the device [68] can achieve the same properties of maximum device
throughput. This results in high I/O amplification but improves read performance at the expense of
maintaining more metadata. Emerging device technologies allow using small SSTs with random
placement which introduces randomness but has the potential to reduce I/O amplification [62].
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SST size, Value

key-value Stores Organization
placement placement

LSM[60], RocksDB[31],Locs[73],
Dostoevsky[24], Triad[5], Mutant[77], Large Full In-place
bLSM[68], Silk[6], cLSM[32], VT-tree [69]

Atlas[48], WiscKey[54], HashKV[14] Large Full Log

Jungle[1] Large Partial Log

LSM-trie[76], Monkey[23], SifrDB[56],

Novelsm[46], PebblesDB[64] Large Partial In-place
Kreon[62] Small Full Log
B€-Tree[10] Small Full In-place

Table 7. Taxonomy of the main approaches to design key-value stores in three dimensions.

This approach is suitable for devices where random I/O throughput degrades gracefully compared
to sequential I/O throughput.

Logical level organization: Keys in each level are logically organized either fully or partially. Full

organization keeps the key space in fully sorted, non-overlapping SSTs. Full organization is usually
done with leveling compaction [5, 14, 24, 31, 32, 48, 54, 60, 73, 77]. However, B-tree indexes have
also been used to either optimize reads and scans [68] or reduce amplification [62]. Partial organi-
zation introduced in [40] maintains the key space in overlapping units, e.g. in the form of tiering
compaction [23, 46, 56, 64, 76] which reduces merge amplification at the cost of reduced read and
scan performance.

Value location: Finally, values can be placed either in-place with keys or in a separate value log.
Typically, values are stored in-place because this results in optimal scan behavior at the expense of
increasing amplification due to value movement during merge operations. Previous work has pro-
posed techniques [14, 48, 54, 61, 62] that store values in a log, reducing amplification significantly,
relying on modern devices to alleviate the impact on scan performance.

In addition to the basic three dimensions, key-value stores employ a set of various techniques to
optimize for different aspects of system operation. These include tail latency or targeted optimiza-
tions for specific workloads (e.g updates). Next, we present a set of representative techniques.

bLSM [68], that targets HDDs, uses a B-tree index per level and bloom filters to enable efficient
look-up operations. Kreon shares the idea of a B-tree index per level but keeps an index only
for the metadata and it does not fully rewrite levels during spills trading I/O randomness for
CPU efficiency. bLSM also introduces gear scheduling to bound write latency. Gear scheduling
is a progress-based compaction scheduler that throttles compactions in the lower levels of the
LSM-Tree. This scheduler is able to prioritize compactions taking place in the higher levels of the
LSM-Tree, close to the in memory component improving tail latency of client applications. Silk [6]
similar to bLSM tackles the same problem by introducing progress based compaction. In addition
to bLSM, Silk performs compactions during off peak periods to reduce the probability of heavy
compactions during bursty client activity. With this approach it trades increased I/O amplification,
since it does not merge adjacent levels that necessarily grow by a constant factor f [7, 60], for
bounding tail latency. FD-tree [52] is an LSM-Tree for flash devices, that replaces bloom filters,
saving their corresponding memory budget, with fractional cascading [15] to speed up look up
operations. VT-tree [69] tries to reduce I/O amplification merging only the actual overlapping parts
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between SSTs. In particular, instead of blindly performing a merge sort operation between a set of
SSTs of L; and L;,; it identifies which parts are non-overlapping and it performs merge sort only
for the overlapping parts. These techniques are orthogonal to Kreon and it can benefit from them.

LSM-trie [76] identifies as the main source of I/O amplification during the compaction process
between two levels L; and L;,; the amount of data read and written from L;,;. This is because L;,;
is f times larger than L; and the compaction process always needs to read and write L; to merge it
with L;41. To reduce the data read and written from L;, it divides it into sub-levels and place keys
in SSTs according to their key hash. Then it uses bits of the hash to select a part of the sublevel
of L;, that it merge sorts with the SST of L;. This optimization trades range queries in favor of
reduced amplification. Kreon shares the same goal of reducing I/O amplification by using a value
log and small SSTs but also supports range queries.

Atlas [48] is a key-value store that aims to improve data-serving density and data replica space
efficiency. To achieve these, Atlas employs a LSM-based approach and separates keys from values
to avoid moving values during compactions. Similarly, WiscKey [54] proposes the separation of
keys and values to reduce write amplification. It stores values in a data log and keeps a LSM index
for the keys. Furthermore, it implements a prefetching mechanism for speeding up range queries
because values are written randomly on the device. Jungle [1] is an LSM-Tree key-value store
optimized for updates. It uses a value log and organizes its levels using tiering. In particular, each
level is organized as a forest of B-trees with overlapping key ranges. This organization reduces I/O
amplification [7] but hurts look up performance. This is because each look up should check in the
worst case all B-trees within a level. However, this trade off is a good fit for Jungle since it targets
update heavy workloads, where the number of distinct keys grow slow.

PebblesDB [64] identifies as the main problem of write amplification in the LSM-Tree the repeated
merges of files at each level during compaction. To fix this, it keeps overlapping sorted files at each
level instead of non-overlapping. However, this approach adds overhead in the read path since
multiple files need to be checked instead of a single. To improve this, PebblesDB introduces guards
which act as a coarse grain index per level inspired by skip lists. Kreon shares the idea of using an
index per level with the difference that in Kreon case is full. Furthermore, it uses memory-mapped
I/0O, keeps both keys and values on a separate log, and executes spill operations only on pointers to
keys and values.

5.2 Other write optimized data structures

TokuDB [72] implements at its core a B¢ -Tree structure. It keeps a global B-tree index in which it
associates a small buffer per B-tree node. Buffers are relatively small so it keeps them unsorted and
scans them during look-up queries. When a buffer fills it is spilled to its N children, where N is the
fan out of the B-tree. Tucana [61] uses a B¢~Tree which buffers keys only at the last level of the tree
and relies on a ratio of memory/data to operate efficiently. Kreon keeps a buffer per level in order
to achieve better batching and is able to server larger datasets with smaller memory/data ratio.

KVell [50] is an efficient log structured key-value store designed for fast storage devices. It uses a
value log and a single level B-tree index in which it stores metadata (pointers) to the actual key-value
pairs. Furthermore, it uses asynchronous IO (io_uring [4]) and batching to perform efficient I/O
with the devices. Kreon shares the same efficiency goals for fast storage devices with KVell but
it uses memory-mapped I/O. This eliminates the need to constantly perform look-up operations
about the position of a device block in DRAM even in the case of hits. This can save up to 30% [38]
CPU overhead when the dataset fits in memory. Furthermore, Kreon uses an LSM-Tree structure
which allows its index to grow efficiently beyond DRAM limits without the known performance
issues of a B-tree index structure [35].
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5.3 Memory-mapped I/O

DI-MMAP [28] proposes an alternative FIFO based replacement policy that targets data-intensive
HPC applications. kmmap shares the same goals as DI-MMAP and introduces priorities for pages in
memory. This gives applications fine grain control similar to user-space application specific caches.
FastMap [63] optimizes Linux memory-mapped I/O path for scalability with increasing the number
of threads. The proposed optimizations are orthogonal to the priorities of kmmap. Authors in [70]
optimize the free page reclamation procedure and make use of extended vectored I/O to reduce
the overhead of write operations. Finally, in [19] the authors propose techniques that reduce the
overhead of page faults and page-table construction. These techniques are orthogonal to our design
and they can be used in Kreon as well.

5.4 RDMA-based communication for data serving

There are two basic design choices for RDMA based systems: (1) The use of the appropriate RDMA
operation (one-sided/two-sided) and (2) the type of queue pairs (reliable/unreliable) used for the
RDMA connections. Previous work [44, 45] has analyzed different RDMA operations and has
shown that one-sided RDMA writes provide the best performance. Furthermore, systems such
as HERD [44], which is a hash-based in memory key-value store, show that reliable queue pair
performance is almost identical with the use of unreliable. Kreon uses reliable connections that
reduce protocol complexity and examines their relative overhead in persistent key-value stores.
Also in Kreon, we use one-sided RDMA writes for efficiency.

Hash-based key-value stores, such as Pilaf [57], FaRM [27] and DrTM [75] try to remove server-
side processing for get operations by using exclusively RDMA reads. For instance, Pilaf [57]
uses solely one-sided RDMA reads to implement client-lookup operations. Pilaf implements gets
transparent to the server since clients perform RDMA reads over multiple round trips to directly
fetch data from the server’s memory. On the contrary, it uses verb messages to implement put
operations that are sent by clients to the server. Another example is FaARM [27] that uses one-sided
RDMA reads to access data directly but it also uses RDMA writes to implement a fast message
passing primitive. However, this results in multiple round trip messages for get operations. For put
operations, they use a single round trip message with server involvement to avoid write-write races,
however still need to deal with read-write races (gets in the presence of concurrent puts). Kreon,
similar to most persistent key-value stores, uses a persistent index. Consequently, direct access from
clients with RDMA reads would result in several round trip messages and possible synchronization
between clients across the network. Therefore, Kreon uses server-side processing for client requests,
and uses RDMA write operations that reduces the number of round trip messages.

Other implementations also involve request processing. For instance, RFP [71] is an RDMA-based
RPC paradigm in which clients use RDMA writes to send requests, and clients fetch results from
server’s memory remotely by using RDMA reads. Jakiro an in-memory key-value store validates
the effectiveness of RFP. HydraDB [74] is an in-memory key-value middleware that is presented
to users as a distributed hash table and to ensure high availability. They use a message passing
mechanism based on RDMA Write for put operations and they leverage RDMA Read for get
operations. KV-Direct [51] is an in-memory key-value system that leverages programmable NICs
in data centers. KV-Direct extends the RDMA primitives from memory operations to key-value
operations. KV-Direct deals with the consistency and synchronization issues at server-side, thus
removes computation overhead in client and reduces network traffic. FlatStore [17] is a persistent
memory key-value storage engine that also uses RDMA writes to send both request and response
messages between clients and servers.
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6 CONCLUSIONS

In this paper, we design Kreon, a persistent key-value store based on LSM-Trees that uses an index
within each level to eliminate the need for sorting large segments and uses a custom memory-
mapped I/O path to reduce the cost of I/O. Compared to RocksDB, Kreon reduces CPU overhead
by up to 8.3x, I/O amplification by up to 4.6x at the expense of increasing randomness of I/Os.
Both index organization and memory-mapped I/O contribute significantly to the reduction of
CPU overhead, while index manipulation and page faults emerge as the main components of per
operation cost in Kreon.
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