Implementing Scalable Parallel
Programming Models with Hybrid Address
Spaces

Anastasios Papagiannis

University of Crete and ICS-FORTH
Heraklion, Greece
apapag@ics.forth.gr

18 February 2013

Anastasios Papagiannis 1/42

Outline

Motivation and Contributions

Background
Intel Single-Chip-Cloud
MapReduce

Design and Implementation
DiMR Design and Implementation
HyMR Design and Implementation

Experimental Analysis
Benchmarks
DiMR vs. HyMR
Scalability
Sustained to Peak Bandwidth

Conclusions

Anastasios Papagiannis 2/42

Motivation and Contributions

Motivation and Contributions

» We are on the transition from multi-core processors to many-core
processors

» Processors support both distributed and shared memory

» ...but programmers have to deal with the potenctial lack of
cache coherence

» Carefully selection of address spaces and software cache
coherence mechanisms are critical for performance and
scalability

» Contributions of this work:

Scalable data splitters

Work-stealing on non-coherent architectures

An evaluation of on-chip barrier algorithms for non-coherent

many-core processors

A mechanism to enables scalable all-to-all exchanges

v

v

v

v

Anastasios Papagiannis 3/42

Background

Outline

Background
Intel Single-Chip-Cloud

Anastasios Papagiannis 4/42

Background

Intel Single-Chip-Cloud

Mz e

Intel SCC

» Many-core processor with 24
tiles, 2 1A cores per tile

» Tiles organized in a 4x6
mesh network with 256 GB/s ==
bisection bandwidth

» Private L1 instruction cache of
16 KB, private L1 data cache
of 16 KB, private unified L2
cache of 256 KB, per core

» 16 KB message passing
buffer (MPB) per tile (only
on-chip memory shared
between cores)

P54C FSB > To
Router

Anastasios Papagiannis 5/42

Background

SCC Adress Spaces

» A software-managed
translation table called LUT,
translate 32bit core’s physical
addresses to 34bit system’s
physical addresses

» The LUT has 256 entries,
each mapping 16MB of
DRAM

» No restriction to reprogram
LUT entries during the
execution of a program

» Use of software-managed
LUTs to implement hybrid
address spaces

LUT Entry

247
250
251

255

Default MapReduce

I rrivate

- POPSHM

I vnused

I:l SCC shared
I user shared
[mes

I:l Configuration Register

Management Console
TCP/IP Interface

LS

Anastasios Papagiannis 6/42

Background

SCC System Software

CPUO MPB 0
b e 5
. . ,-/U Cache —
» Cluster on a Chip with IT'”
. — L2 Cache c
portions of shared memory
Private
» Each core runs its own Linux E DRAM g
kernel 2 =
» Support for Message Passing < 5
. o
using RCCE and RCKMPI g 3
& CPU47 o
» Small messages exchanged P SR
g g \/U Cache\-Z
through MPB
1 L2Cache
» Large messages exchanged o
. MPB 47
through off-chip shared DRAM
DRAM 0 ofichip memory
[on-chip memory
B data buffer

off-chip data flow
on-chip data flow

Anastasios Papagiannis 7/42

Background Intel Single-Chip-Cloud

MapReduce

Outline

Background

MapReduce

Anastasios Papagiannis 8/42

Background Intel Single-Chip-Cloud

MapReduce

MapReduce

» A framework for large-scale data processing

» Programming model (API) and runtime system for a variety of
parallel architectures

> Clusters, SMPs, multi-cores, GPUs, among others
» Based of functional programming language primitives
» Used extensively in real applications
» Indexing system, distributed grep, document clustering, machine
learning, statistical machine translation
» Relies heavily on a scalable runtime system

» Fault-tolerance, parallelization, scheduling, synchronization and
communication

Anastasios Papagiannis 9/42

Background

Intel Single-Chip-Cloud

MapReduce

Example
‘ Sally sells ‘ sea ‘ shells ‘ by the sea shore
Map
v v v v v
sally,1| sells, 1 sea, 1 shells, 1 |by, 1|the, 1| sea, 1 | shore, 1
Group By Key
‘ by, 1 ‘ sally, 1 ‘ sea, 1:1 ‘ sells,1 | the, 1 | shore, 1
Reduce
A, Y A, A
by, 1 sally, 1 sea, 2 sells, 1 the, 1 | shore, 1

Counting word occurrences in a set of documents

Anastasios Papagiannis

10/42

DiMR Design and Implementation
HyMR Di and Implementation

Design and Implementation

Outline

Design and Implementation
DiMR Design and Implementation

Anastasios Papagiannis 11/42

Design and Implementation

DiMR
» Map stage
» Each core executes the
user-defined map function
on chunks of input data
» Intermediate key-value pairs comtine

(Optional)

stored in a contiguous buffer
> Runtime preallocates
large chunks of memory
(64MB) for intermediate Reduce
data buffers o
> More space allocated on (Optonah
demand, if needed

» Each core produces as
many intermediate data
parititions as the total
number of cores

Group

Merge
(Optional)

Anastasios Papagiannis 12/42

DiMR Design and Implementation

Design and Implementation HyMR D and Implementation

DiMR

Input Data

» Combine stage (optional)
» Reduces locally the size of
each partition produced o
during the map stage
» Partition stage

» Requires an all-to-all
exchange between cores

Map

Partition

Group

Reduce

» We use pairwise exchange Optona
algorithm, this needs p—1
where p is the number of (Optena)

cores ouputData

Anastasios Papagiannis 13/42

nd Implementation
ind Implementation

Design and Implementation

DIiMR
» Group stage
» Groups all key-value pairs
with the same key Combine

(Optional)

» Use Radix sort instead of
conventional Quick sort

> Quick sort has complexity
O(nlogn) where Radix sort
has complexity O(kn), k is Recuce
the length of the keys

» Reduce stage
» Sort stage (optional) rion
» Merge stage (optional)

Partition

Group

Sort
(Optional)

Anastasios Papagiannis 14/42

MR Design and Implementation
Design and Implementation DiMR Design and Implementation

HyMR Design and Implementation

Outline

Design and Implementation

HyMR Design and Implementation

Anastasios Papagiannis 15/42

Desi Impl i ¢ ;
esign and Implementation HyMR Design and Implementation

HyMR

DIMR HyMR

Input Data Input Data
Map and
Map Combine
Combine
(Optional)
Partition
Partition
Group
Reduce
Reduce
Sort Local Sort
(Optional) sort
(PSRS)
Merge Merge Previously Sorted Partitions
(Optional)

[_] POPSHM Memory (intermediate Data)
[Private Memory (Local Data)

Output Data

[shared Memory (Input- Output Data)

Anastasios Papagiannis 16/42

. . nd Implementation
Design and Implementation d M © .

HyMR Design and Implementation

HyMR - Scalable Splitters

v

The input in MapReduce is an array of key-value pairs or text files

Each core splits the input array in number of cores chunks and
gets it's own chunk by core ID

In the worst case the splitter executes number-of-cores iterations
Each core stores it’s input chunks in a private queue

v

v

v

Anastasios Papagiannis 17/42

MR Design and Implementation
Design and Implementation DiMR Design and Implementation

HyMR Design and Implementation

HyMR - Map and Combine Stages

» Each map task dequeues a
data chunk from local queue
to execute user-specified map
function on it

» This stage implented in
distributed address space and
no synchronization needed
between cores

» After the completion of

Combine stage we execute a
barrier

POPSHM

Anastasios Papagiannis 18/42

Design and Implementation

DIMR n and Implementation

HyMR Design and Implementation

HyMR - Partition Stage

POPSHM 0

POPSHM 1

POPSHM 2

POPSHM 3

|

l

l

Core’s 0 Private Mem.

Hash Table

Core’s 1 Private Mem.

Hash Table

Core’s 2 Private Mem.|

Hash Table

Core’s 3 Private Mem.|

Hash Table

Anastasios Papagiannis

Design and Implementation

DIMR n and Implementation

HyMR Design and Implementation

HyMR - Partition Stage

POPSHM 0

POPSHM 1

POPSHM 2

POPSHM 3

|

l

l

Core’s 0 Private Mem.

Hash Table

Core’s 1 Private Mem.

Hash Table

Core’s 2 Private Mem.|

Hash Table

Core’s 3 Private Mem.|

Hash Table

Anastasios Papagiannis

Design and Implementation

DIMR n and Implementation

HyMR Design and Implementation

HyMR - Partition Stage

POPSHM 0

POPSHM 1

POPSHM 2

POPSHM 3

|

l

l

Core’s 0 Private Mem.

Hash Table

Core’s 1 Private Mem.

Hash Table

Core’s 2 Private Mem.|

Hash Table

Core’s 3 Private Mem.|

Hash Table

Anastasios Papagiannis

Design and Implementation

DIMR n and Implementation

HyMR Design and Implementation

HyMR - Partition Stage

POPSHM 0

POPSHM 1

POPSHM 2

POPSHM 3

Core 3

|

|

|

Core’s 0 Private Mem.

Hash Table

Core’s 1 Private Mem.

Hash Table

Core’s 2 Private Mem.|

Hash Table

Core’s 3 Private Mem.|

Hash Table

Anastasios Papagiannis

Design and Implementation DiMR Design and Implementation

HyMR Design and Implementation

HyMR - Sort Stage

» Instead of Sort and Merge stages we implement a single Sort
stage using a parallel sorting algorithm

» We use Parallel Sorting using Regular Sampling (PSRS) that has
good load balancing properties
» PSRS has 4 stages:
» Each core sorts int’s own partition locally using sequential Quick
Sort algorith and choose ¢ — 1 pivots
» A single core sorts all the ¢ (¢ — 1) pivots and selects the final
c—1 pivots
» An all-to-all exchange is needed in order to all cores exchange the
parititons
» Each core locally merge the c partitions

Anastasios Papagiannis 23/42

Design and Implementation YR B e W2 E

HyMR Design and Impl

HyMR - Sort Stage

» We implement a hybrid address space version of PSRS using
on-chip MPB buffers for synchronization

» For second stage all cores sorts the Regular Sample of the
pivots and selects the final pivots, this remove the need to
synchronize between second and third stages

» We store all the data into shared memory. Thus the runtime does
not execute an all-to-all exchange for the third stage

Anastasios Papagiannis 24/42

Design and Implementation DiMR Design and Implementation

HyMR Design and Implementation

HyMR - Optimizing On-Chip Barriers

» We revisited several scalable barrier algorithms from "Algorithms
for Scalable Synchronization on Shared-Memory
Multiprocessors"

» We compare Centralized, Tournament, Tree and Dissemination
barrier algorithms with the barrier provided by RCCE library

» We keep shared data in on-chip memory (MPB) and we use
cacheable private memory for private data

» For shared data, the runtime bypass the L2 cache and invalidate
data before reads, or the write no-allocate policy with a write
combining buffer for writes

Anastasios Papagiannis 25/42

MR Design and Implementation
Design and Implementation DiMR Design and Implementation

HyMR Design and Implementation

HyMR - Optimizing On-Chip Barriers

1000000
@’ 100000
© —e— RCCE_barrier
5 —a4— Centralized
3;/ 10000 — -— - Dissemination
g — -o— - Tournament
S s a-g A=k 48 — - Tree
= 1000 4 :_._._.__._,_o—--o—.
- >

.
100 T T T T 1
0 10 20 30 40 50

#cores

» The Centralized Barrier algorithm is ill-suited for many-core
processors with distributed on-chip memory

» Tournament, Tree and Dissemination Barrier algorithms scale
well with the number of cores

» Dissemination Barrier algorithm has the lowest latency

Anastasios Papagiannis 26/42

Design and Implementation YR B e W2 E

HyMR Design and Impl

HyMR - Work-Stealing

» The latency for accessing DRAM depends on the number of
hops in the chip’s 2D mesh

» Every Map task is not guaranteed that execute the same
ammount of work in each input chunk

» These can introduce load imbalance in Map stage

» We implement a work stealing algorithm inspired by Cilk
» We store dequeues in on-chip memory (MPB) to minimize latency

» Using shared-memory the thief can get a portion of work from
the victim without interrupt it's execution

» The thief choose victims randomly

Anastasios Papagiannis 27/42

Benchmarks

Experimental Analysis

ed to Peak Bandwidth

Outline

Experimental Analysis
Benchmarks

Anastasios Papagiannis 28/42

Experimental Analysis

o Peak Bandwidth

Benchmarks

» Word Count counts the number of occurrences of each word in
a text file (400MB input size)

» Histogram counts the frequency of occurrences of each RGB
color component in an image file (1.6GB input size)

» Linear Regression computes a line of best fit for a set of points,
given their 2D coordinates (400MB input size)

» Matrix Multiply multiplies two dense matrices of integers
(2048 x 2048 input matrices)

Configuration:

» Tiles run at 800MHz, Mesh interconnect runs at 800MHz and
DRAM runs at 800MHz

» Linux kernel version 2.6.38
» GCC and G++ compiler version 4.5.2

Anastasios Papagiannis 29/42

Benchmarks
DiMR vs.

lability

Experimental Analysis i e B

Outline

Experimental Analysis

DiMR vs. HyMR

Anastasios Papagiannis 30/42

DIMR vs. HyMR

. . Scalabil
Experimental Analysis

» Better Map stage in all o] o
cases § o] £ o]
» Better Partition stage
in all cases
> Reduce Stage iS the Histogram LinearRegression
same for DIMR and
HyMR
> Better Merge for g %] 8"
benchmarks with large & & .
number of output
key-value pairs o o
MatrixMultiply WordCount

Left bars for DIMR, right bars for HyMR

Anastasios Papagiannis 31/42

Experimental Analysis

andwidth

Outline

Experimental Analysis

Scalability

Anastasios Papagiannis 32/42

Experimental Analysis

Sustained to Peak Bandwidth

» Compare HyMR with Phoenix++, the state-of-art MapReduce
implementation for cache-coherent multi-processors in terms of
scalability

» 48-core multi-processor with 4 12-core AMD Opteron 6172
processors running at 2.1 GHz

» 64GB of DRAM

» Linux Kernel version 2.6.32

» G++ compiler version 4.7.0

Anastasios Papagiannis 33/42

Experimental Analysis

10 20 30 40 50
#cores
Histogram

T T T T
10 20 30 40 50

#cores
MatrixMultiply

Scalability
Si ined to Pe

10 20 30 40 50
#cores
LinearRegression

T T T T 1
10 20 30 40 50

#cores
WordCount

—— = Ideal
—e— Phoenix++
—4— HyMR

—— = Ideal
—e— Phoenix++
—4— HyMR

Anastasios Papagiannis 34/42

R
ity
d to Peak Bandwidth

Experimental Analysis

Outline

Experimental Analysis

Sustained to Peak Bandwidth

Anastasios Papagiannis 35/42

Experimental Analysis

Sustained to Peak Bandwidth

» Compare HyMR with Phoenix++ in terms of data processing
bandwidth
» We normalize the the measurements with the peak bandwidth of
the platform (ideal value is 1)
» We get the peak bandwidth of each platform using the STREAM
benchmark (Triad case)

Anastasios Papagiannis 36/42

lability
Sustained to Peak Bandwidth

Experimental Analysis

030
op et T T | 0254y A |
0.5
- . 0.20
2 0.4 2
s 3 0154 —e— Phoenix++
£ .51 3 0 —a— HyMR
= - =
i i

.10 o
02.] 0.10 ././/*/a
0.1 —ﬂw 0.05

0.0 T T T T 1 0.00 T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50
#cores #cores
Histogram LinearRegression
0.00030 - 0.05 7#/"\‘
0.00025 0.04
. 0.00020 >
e e 0.03 4 Ph
S] & —e— Phoenix++
-2 000015 — 3 —a— HyMR
= = 0.024
W 0.00010 4 w
0.00005 001 ’,,_./'/‘\‘
0.00000 T T T T 1 0.00 T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50
#cores #cores
MatrixMultiply WordCount

Anastasios Papagiannis

Conclusions

Conclusions

» This thesis presents the design and implementation of
MapReduce runtime system using hybrid address spaces

» The lack of a hardware cache coherence protocol allows runtime
systems to scale almost perfectly in share-nothing stages

» The stages where cores exchange large amount of data are best
implemented in an off-chip shared address spaces

» The synchronization implemented using on-chip memory to
minimize latency

» These techniques presented can be used to implement domain
specific scalable runtime systems and scalable applications in

future homogeneous many-core processors without hardware
cache coherence

Anastasios Papagiannis 38/42

Conclusions

Thank you!

Anastasios Papagiannis 39/42

Radix Sort vs. Quick Sort
Appendix PSRS Speedup

Speedup for Partition and N

—&— Quick Sort
—a— Radix Sort

e
o 1+ 2 3 4

Number of Items (millions)

Anastasios Papagiannis 40/42

Radix Sort vs. Quic
Appendix PSRS Speedup

Speedup for Partition and Merg

48 —
Q_32_ —@— linear
S —a— 8M
8 . —— 4M
Q —a— 2M
9D 464 —%x— 1M

#cores

Anastasios Papagiannis 41/42

Quick Sort
Appendix p

Speedup for Partition and Merge stages

Application Partition Speedup | Merge Speedup
WordCount 6.64 x 9.61x
Histogram 1.48x 0.69x
Linear Regression 1.28x 0.78x
Matrix Multiply 1.00x 1.00x
GeoMean 1.88x 1.50x

Table: Speedup for partition and merge stages computed using DiIMR
execution time over HyMR execution time using 48 cores.

Anastasios Papagiannis 42/42

	Motivation and Contributions
	Background
	Intel Single-Chip-Cloud
	MapReduce

	Design and Implementation
	DiMR Design and Implementation
	HyMR Design and Implementation

	Experimental Analysis
	Benchmarks
	DiMR vs. HyMR
	Scalability
	Sustained to Peak Bandwidth

	Conclusions
	Appendix

