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Abstract—Many-core processors, due to their complexity
and diversity, necessitate high-productivity, domain-specific ap-
proaches to parallel programming. These approaches should
hide architectural details and low-level parallelization constructs,
while enabling scalability and performance portability. This
paper presents a scalable implementation of MapReduce, a
runtime system used widely by domain-specific languages for
large-scale data processing, on the Intel SCC. We address the
scalability bottlenecks of MapReduce with data partitioning,
combining and sorting algorithms that we customize for the SCC
network on-chip architecture. We achieve linear or superlinear
speedups for representative MapReduce workloads with data sets
that fit on a single SCC node. We also show that the SCC node
outperforms the IBM Cell QS22 Blade, when the latter uses
the fastest implementation of MapReduce available for the Cell
processor.

Index Terms—MapReduce; Single-Chip-Cloud; Resource man-
agement; Runtime systems; Operating Systems; Parallel Pro-
gramming Models.

I. INTRODUCTION

Programming models for future many-core processors
should disengage from low-level parallel programming con-
structs –such as threads, locks, and messages– and em-
brace high-productivity domain-specific alternatives. Domain-
specific frameworks for parallel programming will require
scalable runtime systems to exploit many-core architectures.
As more many-core processor architectures forgo cache co-
herence and use fast on-chip communication to improve per-
formance and energy-efficiency, runtime systems for parallel
programming face the challenge of scaling, while hiding
the complexities of explicit communication from program-
mers [1].

Google’s MapReduce programming model [2] is widely
used for implementing domain-specific languages to support
large-scale data processing applications. MapReduce borrows
idioms from functional programming to express parallel op-
erators on distributed collections of data and to aggregate
data. The MapReduce programming framework has been
implemented on a variety of parallel architectures, including
clusters, shared-memory multi-core systems with coherent
caches, graphics processing units, and multi-core processors
with software-managed local memories [2], [3], [4], [5], [6].
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This paper presents the first, to the best of our knowledge,
implementation of the MapReduce programming model and
runtime system on the Intel Single-Chip Cloud Computer
(SCC). We present a design that utilizes effectively the SCC
interconnection network and on-chip shared communication
buffers to alleviate two fundamental scalability bottlenecks of
MapReduce: data partitioning and data sorting. The artifact
of our contribution is a fast and scalable implementation
of MapReduce, based on customized on-chip data exchange,
combining, and sorting algorithms. We achieve linear or su-
perlinear speedups for representative MapReduce workloads,
which process data sets that fit in the memory of a single
SCC node. We further show that an SCC node outperforms
an IBM QS22 Cell blade with two Cell processors, when the
latter uses the fastest implementation of MapReduce for the
Cell processor available to date [6].

II. BACKGROUND

We provide background for our work by presenting the
MapReduce program execution stages and discussing the key
architectural properties of the Intel SCC processor.

A. MapReduce

MapReduce [2] is a high-level parallel programming model
based on two primitives, map and reduce. Parallel computation
in MapReduce is expressed as processing and aggregation
operators applied on distributed data sets. A MapReduce
application processes an input of (key, value) pairs to produce
an output of (key, value) pairs. A typical MapReduce program
executes in four stages, a map stage, where parallel workers
(called mappers) produce a set of intermediate (key, value)
pairs for each input pair, a partition stage which exchanges
intermediate data between mappers, a group stage which
groups all intermediate (key, value) pairs associated with
the same key, and a reduce stage which merges the values
associated with each key. The map and reduce stages exe-
cute user-defined data processing and aggregation operators.
MapReduce implementations typically have an explicit barrier
between the map and partition stages, although this barrier can
be replaced by a software pipeline [7].

Figure 1 shows a typical MapReduce execution flow. The
MapReduce runtime splits the input data into fixed size chunks
and assigns each chunk to a mapper. Each mapper executes
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Fig. 1: A typical MapReduce execution flow (M stands for Mappers,
R stands for Reducers)

the map function on its assigned chunk, which consists of a
series of input (key, value) pairs. The map function generates
zero or more intermediate (key, value) pairs for every input
(key, value) pair. The input and output types of the map
function may differ. The runtime system maintains a number
of reducers that perform data aggregation. During the map
stage, each mapper exports as many different partitions as the
number of reducers. It is permissible for mappers and reducers
to execute on the same compute node.

To split the output of a mapper, the user may define a
partition function. The partition function takes as input a
key and the number of reducers and returns an index to
the reducer to which the output should be sent. The typical
implementation of this step is to hash the key and compute
the partition index as the key’s hash value modulo the number
of reducers. It is important to pick a partitioning function
that gives an approximately uniform distribution of data per
reducer for load balancing purposes, otherwise the runtime
may stall waiting for slow reducers to finish. The partition
stage executes between the map and reduce stages and moves
each intermediate (key, value) pair from the node running
the mapper that produced it to the node on which it will be
reduced.

Following the partitioning stage, an optional group stage
sorts the intermediate data on each reducer. The runtime has
to rearrange the intermediate (key, value) pairs so that the data
is organized as a set of unique keys and a list of values for
each key. Finally, the runtime executes the user-defined reduce
function to aggregate intermediate (key, value list) pairs. The
reducer iterates through the values that are associated with
each key and produces zero or more output (key, value) pairs.

B. Intel Single-Chip-Cloud-Computer (SCC)

The Intel SCC [8] (Figure 2) is a many-core processor with
24 tiles and 2 IA cores per tile. The tiles are organized in
a 4×6 mesh network with 256 GB/s bisection bandwidth.
The processor has 4 integrated DDR3 memory controllers,
one for each group of 6 tiles. Each core has a private L1
instruction cache of 16 KB, a private L1 data cache of 16
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Fig. 2: SCC processor diagram

KB and a private unified L2 cache of 256 KB. Each dual-core
tile has a 16 KB message passing buffer (MPB), which is the
only component of the SCC on-chip memory hierarchy that is
shared between cores. The MPB provides space for direct core-
to-core communication. On-chip communication data is read
from the MPB through the L1 data cache and bypasses the L2
cache. For writes, a no-allocate policy is used, in conjunction
with a write combining buffer at the L1 cache. Software needs
to maintain coherence between the MPB and the L1 caches by
using a, unique to the SCC, L1 cache invalidation instruction,
when data is stored in the MPB.

The 32-bit address space of the system is mapped to an
extended 34-bit address space to allow access to up to 64
GB of off-chip memory (up to 16 GB from each group of 6
tiles). This is accomplished through a Look-Up Table (LUT)
attached to each core. The address space of the system is
configurable and can be distributed between private off-chip
memory associated with each core, shared off-chip memory,
and shared on-chip SRAM, which corresponds to data stored
in the message buffers and cached in the L1 cache.

We implemented MapReduce using the the standard soft-
ware environment of SCC compute nodes available by Intel,
namely a configuration running a Linux kernel on each core
and RCCE, the Intel one-sided communication library [9].

III. MAPREDUCE DESIGN

We implement a seven-stage runtime system for MapRe-
duce. The seven stages are map, combine, partition, group,
reduce, sort and merge. The combine and merge stages are
optional in typical MapReduce setups, whereas the group stage
replaces the intermediate sort stage of the original MapReduce



1 10 100 1000 10000 100000 1000000

Message Size in Bytes

0

20

40

60

80

100

120
M

B
y
te

s
/s

e
c

RCCE

RCKMPI

Fig. 3: RCKMPI vs. RCCE bandwidth in a ping-pong benchmark

pipeline, to reduce overall computational complexity. We de-
scribe the stages of MapReduce in more detail in the following
paragraphs.

a) Map: During the map stage, the runtime system
divides the input evenly to as many parts as the number of
mappers. In our implementation, we use as many mappers as
the number of cores. Each core then executes the user-defined
map function over its assigned input data. We preallocate a
large chunk of memory (64 MB) for the output of the map
stage. If the volume of intermediate data produced is more
than 64 MB, we allocate a new output buffer on demand.
Each core exports as many intermediate data partitions as
the number of cores in the system. To split intermediate
data between partitions, we use either a user-defined hash
function or a default generic hash function available by our
MapReduce runtime system. Each core emits keys and values
in a contiguous buffer.

b) Combine: This stage is optional and executes if the
user provides a combiner function. The purpose of this stage
is to reduce locally the size of each partition produced during
the map stage. The combine function takes as input a key and
a list of partially aggregated intermediate values associated
with that key. It produces as output a single (key, value) pair
where the value is an updated partial aggregation associated
with the same key. We use the combine function to reduce
data volume and balance the partitions that will be processed
by different cores in the following stages of MapReduce. We
use the same strategy as in the group stage described later to
group together all values with the same key. The combiner
function produces a new intermediate (key, value) pair for
each intermediate key and its corresponding list of values. The
combine stage is equivalent to applying the reduce stage in
each of the intermediate partitions.

c) Partition: The partition stage requires an all-to-all
exchange between cores. Data partitions generated during the
map stage may be different in size. We implement a custom
all-to-all exchange algorithm for the SCC to achieve scalable
data partitioning. The algorithm first executes an all-to-all
exchange of the intermediate partition’s sizes, followed by an
all-to-all exchange of the intermediate data. We implement
the all-to-all exchange using pairwise exchanges. Let p be the
number of available cores and rank the core ID. This algorithm
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Fig. 4: Libc qsort vs. radix sort, for a variable number of word-size
elements

uses p− 1 steps and in each step k, core rank receives data
from core rank−k and sends data to core rank+k. We opted
to use the RCCE {send, recv} functions to implement this
all-to-all exchange. RCCE is an SCC communication run-
time environment based on one-sided get-put communication
primitives [9]. Figure 3 shows that native RCCE achieves
better throughput than RCKMPI, when communication flows
through the SCCMPB channel, which uses exclusively the
on-chip message-passing buffers. RCCE also uses the MPB
buffers to exchange data.

d) Group: The group stage groups together all (key,
value) pairs with the same key, taken across all intermediate
data partitions. In previous works [6], [3], [4], [5], [10], [11],
a generic sorting scheme with a user-defined comparator was
used to perform grouping. We replace this scheme with a
radix sort algorithm [12] for grouping on the SCC. The sorting
algorithms employed in prior MapReduce implementations on
multi-core systems have complexity O(nlogn), whereas radix
sort has complexity O(kn) where k is the size of the key
in bytes. Figure 4 shows a comparison of the libc quicksort
implementation and our radix sort implementation for different
input sizes. Radix sort outperforms quicksort with the caveat
that radix sort sorts strings of bytes and can not use a user-
defined comparator for sorting. This caveat implies that in
applications where the key data type is not a string, radix sort
may produce unsorted sequences that need to be processed
further in the following stages of MapReduce.

Previous sorting algorithms used in MapReduce swap (key,
value) pairs by copying the actual data of these pairs. Our radix
sort algorithm swaps pointers to (key, value) pairs instead.
Thus, in every swap we only exchange two pointers, making
the cost of the swap independent of the size of the (key, value)
pair. The output of this stage is an array of pointers to the
actual data. This array needs to be transformed to a structure
containing pairs of keys and value lists. We accomplish this
by simply iterating through the array and finding the unique
keys. We initiate an iterator for accessing the values with no
need to rearrange the data in memory. We statically know the
sizes of all the buffers needed for the sorting stage, therefore
we preallocate these buffers. This optimization minimizes the



Application Class Input size
Word Count partition-dominated 60 MB
Histogram sort-dominated 400 MB
Linear Regression map-dominated 32 MB
Kmeans map-dominated 115 MB

TABLE I: MapReduce application workloads

overhead of dynamic memory allocation.
e) Reduce: The reduce stage executes a user-defined key

aggregation function. The prior group stage exports an array
of all distinct keys where each key contains the number of
occurrences of the key and a pointer to an array of its values.
The output size of the reduce stage can be statically identified,
therefore we preallocate the stage’s output buffers, once again
to minimize dynamic memory allocation overhead.

f) Sort: The sort stage sorts the (key, value) pairs pro-
duced following the reduction, using quicksort and a user-
specified comparator. This stage is necessary because the
earlier group stage may produce unsorted sequences. However,
this sort stage is necessary only if the following data merging
stage is needed as well.

g) Merge: The merge stage optionally merges the output
of all cores in one core. In the default configuration of SCC,
each core has its private memory, therefore in applications that
require merging, we need to produce the final output in the
memory of a single core. We use the binomial merge algorithm
for this stage [13], which completes in logn steps.

IV. EXPERIMENTAL ANALYSIS

Table I lists the MapReduce application workloads that we
used for experiments. Following conventions from [11], we
classify applications as map-dominated, partition-dominated
and sort-dominated, according to the phase where these ap-
plications fail to scale on a multi-core system.

Histogram counts the frequency of occurrences of each
RGB color component in an image file. The map function
emits the occurrences of each color component in pixels and
the reduce function produces the sum of occurrences of each
component. Word Count counts the number of occurrences of
each word in a text file. The map function splits the input text
into words, whereas the reduce function sums the number of
occurrences of each word to produce a final count. Kmeans
creates clusters from a set of data points, by finding the closest
cluster for each data point in the map function and computing
the cluster means in the reduce function. Linear Regression
computes a line of best fit for a set of points, given their 2D
coordinates. Map computes intermediate summary statistics
for the points, while reduce gathers all data of each of the
summary statistics and calculates the best fit.

In our experiments, we use the standard frequency con-
figuration of the SCC chip. In this configuration, each tile
runs at a frequency of 533MHz, the mesh interconnect runs
at a frequency of 800MHz and DRAM runs at a frequency of
800MHz.

Figure 5 illustrates speedup and Figure 6 illustrates ex-
ecution time of application workloads, with and without a

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
p
e
e
d
u
p

Histogram

w combiner

w/o combiner

ideal

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
p
e
e
d
u
p

Word Count

w combiner

w/o combiner

ideal

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
p
e
e
d
u
p

Kmeans

w combiner

w/o combiner

ideal

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
p
e
e
d
u
p

Linear Regression

w combiner

w/o combiner

ideal

Fig. 5: Speedup of MapReduce workloads
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combiner function. Speedup is calculated using execution time
on 4 cores (2 tiles) as the nominator, therefore ideal linear
speedup is 16 for the entire SCC chip. Figure 7 and Figure 8
show breakdowns of execution time for all applications. All
applications scale well on the chip. With the use of a combiner
function, applications have nearly ideal linear or in some cases,
superlinear speedup. The partition stage exhibits the worst
scaling behavior. The combine stage improves performance by
reducing the intermediate data exported from the map stage.
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This in turn means that the partition stage has to exchange less
data between cores. The reason for superlinear speedup is that
the complexity of the group stage decreases exponentially with
the number of cores. In applications where the grouping stage
dominates execution time, the overall application speedup
may therefore be superlinear. We analyze briefly individual
applications in the following paragraphs.

Histogram does not achieve perfect speedup without a com-
biner (Figure 5), because the partition stage does not scale.
Partitioning overhead dominates execution time (Figure 7).
Reducing the intermediate data size with a combiner alleviates
the bottleneck. Using the combiner also decreases the execu-
tion time of the grouping and reduce stages. The combiner
function is the same function as the one used in the reduce
stage in this benchmark. Therefore, the combine stage executes
a part of the reduce stage on the intermediate values available
locally to each core. Histogram exports a maximum of only
3× 255 different keys, which makes the merge stage time
insignificant.

KMeans and Histogram have similar behavior (Figure 5),
with the exception that in KMeans the map stage dominates
execution time, therefore the combiner has a less significant
impact on overall execution time (Figure 7). This is also the
reason why in Kmeans we do not achieve superlinear speedup.

Linear Regression is an entirely map-dominated benchmark
and therefore scales perfectly. Each map function exports five
(key, value) pairs and therefore group and reduce times are
insignificant. Since the map stage exports only five different
keys, we can only use five cores in the execution stages after
map. From the breakdowns (Figure 8) we observe that this is
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not a scalability bottleneck. Merging the output results of five
cores has negligible overhead.

Word Count incurs load imbalance in the grouping stage. This
leads to erratic speedup (Figure 5). However, the problem is
easily alleviated with a combiner function that rebalances the
volume of intermediate data between cores. We have compared
many hash functions for strings while experimenting with
Word Count. We ended up using the djb2 hash function. This
function initially sets hash = 5381 and then for each character
of the string it sets hash = hash∗33+c where c is the ASCII
value of each character. The selected hash function results
in better distribution of intermediate keys among different
partitions in comparison with other hash functions.

Figure 9 illustrates a comparison of our implementation of
MapReduce on the SCC with a competitive implementation
of MapReduce on the Cell processor, which is the fastest
implementation for that processor published to date [6]. We
used the Word Count benchmark with a 60 MB input size. We
ran this benchmark on a Cell QS22 Blade with 8GB RAM
and report execution time with the Cell MapReduce runtime
published in [6], using one or both of the Cell processors
of the QS22 blade. Each Cell processor has 9 cores, out of
which 8 (the SPE vector cores) are used for MapReduce tasks
and one (the PowerPC PPE core) is used for the runtime
system. The maximum number of mapper and reducer cores
is 8 when using one Cell processor and 16 when using two
Cell processors. The SCC node with a single SCC processor
outperforms the dual-processor Cell QS22 blade by up to
1.87×, when the SCC MapReduce uses combiner functions.
We note that the Cell processors on the QS22 run at 3.2 GHz
and that each core on the Cell has a software-managed local
store of the same size as the L2 cache of each core on the
SCC.

V. RELATED WORK

Several prior research efforts ported MapReduce to promi-
nent hardware platforms for high-performance computing, in-
cluding multicore processors [4], [5], [14], GPUs [3], [15] the
Cell processor [11], [6], [16] and FPGAs via direct software
to hardware translation [17].



Phoenix, a port of MapReduce for cache-coherent shared-
memory multicore systems [4], [5], exploits locality implicitly
by controlling the granularity of tasks and the assignment
of tasks to cores. Phoenix performs dynamic assignment of
map and reduce tasks to cores. It controls task sizes so that
the working set of each task fits in the L1 cache of each
core. Phoenix also provides an option to perform prefetching
in the L2 data cache. The main focus in the design of
Phoenix is on achieving scalability through NUMA-aware
memory management. Each map thread emits intermediate
results on a space allocated on the closest memory module
to the CPU the thread is scheduled on. In the most recently
published version of Phoenix [5], the authors use a multi-
layer approach to optimize the runtime system. These layers
include the algorithm, the implementation and and the runtime-
OS interaction. A different approach to optimize Phoenix is
proposed in [14] where the authors use tiling to minimize
task memory footprints and improve cache locality.

MapReduce has also been ported to the Cell BE proces-
sor [11], [6]. In the implementation presented in [6], which
is the fastest, the runtime system controls locality explicitly,
using DMAs and software prefetching via multi-buffering
in the map and merge-sort stages. Contrary to Phoenix, the
runtime system does not hash and does not partition keys in
per-core buffers, thereby eliminating memory copies, while
still allowing a balanced distribution of work during the sort
and reduce stages.

Implementations of MapReduce on GPUs also consider the
implications of explicitly-managed local memories [10], [3],
[15]. Mars [3] uses mock map tasks to compute the sizes
of buffers needed by each core for emitting results of real
map tasks. Other optimizations of MapReduce on GPUs focus
on achieving fine-grain interleaving of memory accesses from
threads on the GPU, to utilize the available GPU memory
bandwidth.

VI. CONCLUSIONS

This paper presented a scalable implementation of Google’s
MapReduce runtime system on the Intel SCC. The imple-
mentation attests to the scalability of the chip, as well as
its ability to support software stacks and high-level parallel
programming models that hide explicit communication from
programmers. Our implementation of MapReduce leveraged
one-sided on-chip communication primitives and customized
data combining algorithms to alleviate bottlenecks that arise
during data partitioning and sorting. We demonstrated perfect
linear or superlinear scaling of applications with realistic
datasets for a single SCC node and performance that exceeds
the fastest to date implementation of MapReduce on IBM
Cell blades. While our results are promising, our work raises
several interesting questions for future research. These include
design choices for implementing the full MapReduce exe-
cution path, including I/O, alternative management schemes
for the SCC memory hierarchy that exploit off-chip shared
memory, the implementation of dynamic task scheduling, and
further analysis of applications.
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