
Motivation
Background

Design
Experimental Analysis

Conclusions

Scalable Runtime Support for
Data-Intensive Applications on the

Single-Chip Cloud Computer

Anastasios Papagiannis and Dimitrios S. Nikolopoulos,
FORTH-ICS

Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)

GR–70013, Heraklion, Crete, GREECE
{apapag,dsn}@ics.forth.gr

3rd MARC Symposium, 2011

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 1 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 2 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Motivation and Contributions

I We are on the transition from multi-core processors to many-core
processors

I Programmers have to deal with:
I many cores
I many forms of implicit or explicit communication
I many forms of synchronization
I potential lack of cache coherence

I Contributions of this work:
I First implementation of a high-level domain-specific parallel

programming model (Google’s MapReduce) on a cache-based
many-core processor with no cache coherence, based on explicit
communication (SCC)

I Evaluation showing that the Intel SCC supports effectively:
I High-level programming models that hide communication,

synchronization, parallelization under the hood
I Scalable execution of data-intensive applications

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 3 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Intel Single-Chip-Cloud
MapReduce

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 4 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Intel Single-Chip-Cloud
MapReduce

Intel SCC

I Many-core processor with 24
tiles, 2 IA cores per tile

I Tiles organized in a 4×6
mesh network with 256 GB/s
bisection bandwidth

I Private L1 instruction cache of
16 KB, private L1 data cache
of 16 KB, private unified L2
cache of 256 KB, per core

I 16 KB message passing
buffer (MPB) per tile (only
on-chip memory shared
between cores)

Tile

Tile Tile

Tile

Tile Tile

Tile

Tile Tile

Tile Tile

R R

R

R R

R R

System Interface

Tile Tile

Tile Tile

Tile Tile

Tile

Tile

Tile

Tile Tile

Tile Tile

R

R

R

R

R R

RR

R R R R

R R R

R

R

VRC

D
D

R
M

C

D
D

R
M

C
D

D
R

M
C

D
D

R
M

C

P54C
(16KB
each L1)

P54C
(16KB
each L1)

CC

CC

256KB

 L2

256KB

 L2

MIU

Message
 Passing
 Bu�er

Tra�c
Gen

Tile

P54C FSB To
Router

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 5 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Intel Single-Chip-Cloud
MapReduce

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 6 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Intel Single-Chip-Cloud
MapReduce

MapReduce

I A framework for large-scale data processing
I Programming model (API) and runtime system for a variety of

parallel architectures
I Clusters, SMPs, multi-cores, GPUs, among others

I Based of functional programming language primitives
I Used extensively in real applications

I Indexing system, distributed grep, document clustering, machine
learning, statistical machine translation

I Relies heavily on a scalable runtime system
I Fault-tolerance, parallelization, scheduling, synchronization and

communication

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 7 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Intel Single-Chip-Cloud
MapReduce

Example

Sally sells sea shells by the sea shore

sally,1| sells, 1 sea, 1 shells, 1 by, 1| the, 1 sea, 1 shore, 1

Map

Group By Key

Reduce

by, 1 sally, 1 sea, 1:1 sells, 1 the, 1 shore, 1

by, 1 sally, 1 sea, 2 sells, 1 the, 1 shore, 1

Counting word occurrences in a set of documents

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 8 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 9 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

Design

Seven-stage runtime system for MapReduce:
I Map
I Combine (optional)
I Partition
I Group
I Reduce
I Sort (optional)
I Merge (optional)

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 10 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 11 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Map

Core 0 Core 1

by the the by by the by the by

by,1 | by,1 the,1|the,1 by,1|by,1|by,1 the,1|the,1

Map Map

I Each core executes the user-defined map function on chunks of
input data, located in local memory

I Map function emits one or more intermediate key-value pairs

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 12 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Map

Core 0 Core 1

by the the by by the by the by

by,1 | by,1 the,1|the,1 by,1|by,1|by,1 the,1|the,1

Map Map

I Intermediate key-value pairs stored in a contiguous buffer
I Runtime preallocates large chunks of memory (64 MB) for

intermediate data buffers
I More buffering space allocated on demand, if needed
I Allocation strategy reduces memory management overhead

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 12 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Map

Core 0 Core 1

by the the by by the by the by

by,1 | by,1 the,1|the,1 by,1|by,1|by,1 the,1|the,1

Map Map

I Each core produces as many intermediate data partitions as the
total number of cores

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 12 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Combine

by,1 | by,1 the,1|the,1 by,1|by,1|by,1 the,1|the,1

Combine Combine CombineCombine

by,2 the,2 by,3 the,2

Core 0 Core 1

I Optional stage executed if user provides a combiner function
I Reduces locally the size of each partition produced during the

map stage

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 13 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Partition

P0 P1 P2 P3

P0 P1 P2 P3

P0 P1 P2 P3

Iter. 0

Iter. 1

Iter. 2

I Requires an all-to-all exchange between cores
I Data partitions generated during the map stage may be different

in size
I First execute an all-to-all exchange of the sizes of each partition
I Knowing the size of each partition, execute a second all-to-all

exchange with the actual data

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 14 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Partition

P0 P1 P2 P3

P0 P1 P2 P3

P0 P1 P2 P3

Iter. 0

Iter. 1

Iter. 2

I Let p be the number of available cores and rank the core ID. This
algorithm uses p−1 steps and in each step k , core rank receives
data from core rank −k and sends data to core rank +k .

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 14 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Group

I Groups all (key, value) pairs with the same key
I Use radix sort instead of conventional merge sort

I Radix sort sorts strings of bytes and can not use a user-defined
comparator for sorting

I If radix sort does not sort native application type, sort the output
using a user-specified compare function

I Conventional sorting algorithms have complexity O(nlogn). Radix
sort has complexity O(kn) where k is the size of the key in bytes.

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 15 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Reduce

the,4

Core 0 Core 1

by,2 | by,3 the,2 | the,2

Reduce Reduce

by,5

I Group stage exports distinct keys with a list of corresponding
values

I Reduce stage executes user-defined aggregation function on
each key-list(of values) pair

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 16 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Reduce

the,4

Core 0 Core 1

by,2 | by,3 the,2 | the,2

Reduce Reduce

by,5

I Reduce function emits one or more output key-value pairs
I Total output size known prior to reduction, therefore output buffer is

preallocated
I Minimizes memory management overhead

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 16 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Outline
Implementation

MapReduce
Sort and Merge

P0 P1 P2 P3

P0 P2

P0

Step 0

Step 1

Step 2

Output Bu!er

I Sort
I Sort the output key-value pairs of the previous reduction stage
I Quick sort algorithm with complexity O(nlogn), based on a

user-specified compare function
I Merge

I Optionally merges the output of all cores in one core
I Binomial tree merge algorithm, completes in logn steps

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 17 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 18 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Benchmarks

I Histogram (partition-dominated) counts the frequency of
occurrences of each RGB color component in an image file

I Word Count (partition-dominated) counts the number of
occurrences of each word in a text file

I Kmeans (map-dominated) creates clusters from a set of data
points

I Linear Regression (map-dominated) computes a line of best fit
for a set of points, given their 2D coordinates

Configuration:

I Tiles run at 533MHz
I Mesh interconnect runs at 800MHz
I DRAM runs at 800MHz

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 19 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 20 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

Speedup with Combiner

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

Speedup without Combiner

Histogram
WordCount
KMeans
Linear Regression
ideal

I Combiner function improves scalability
I Kmeans and Linear Regression are map-dominated benchmarks

I Superlinear speedup because complexity of the group stage
decreases exponentially with the number of cores

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 21 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 22 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

0

2

4

6

8

S
ec

on
ds

Merge
Sort
Reduce
Group
Partition
Combine
Map

Histogram KMeans WordCount LinearRegression

Left bars with combiner, right without combiner

I Using a combiner function reduces execution time
I Partition stage does not scale
I Combiner minimizes total partition time and group time

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 23 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Outline

Motivation

Background
Intel Single-Chip-Cloud
MapReduce

Design
Outline
Implementation

Experimental Analysis
Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

Conclusions

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 24 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Benchmarks
Speedup
Execution Time Breakdowns
SCC vs. Cell BE

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

10

20

30

40

50

S
ec

on
ds

SCC - w combiner
SCC - w/o combiner
Cell Blade - 1 processor
Cell Blade - 2 processors

I QS22 Blade consists of 2 Cell BE Processors at 3.2 GHz
I Each processor has 8 SPEs (accelerators)
I WordCount benchmark with 60MB input size
I Single-SCC nodes outperforms dual-Cell blade by up to 1.87×

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 25 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Related Work

I Other ports of MapReduce on clusters, SMPs, multicores and
GPUs (HPCA07,PACT08,IISWC09,ICPP10)

I Shared-memory ports based on shared data structures in
cache-coherent address space

I SCC port based on scalable exchange algorithms, while utilizing
caches for fast message exchanges

I Distributed-memory ports based on generic sorting algorithms
I SCC port based on combiner and radix sort algorithm

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 26 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Conclusions

I Our implementation of MapReduce on the Intel SCC
demonstrates:

I Feasibility of implementing high-level, domain-specific parallel
programming models that hide explicit communication

I SCC chip scalability when using optimized chip-specific global
communication algorithms

I Good adaptivity to diverge workloads: map-dominated,
partition-dominated

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 27 / 29

Motivation
Background

Design
Experimental Analysis

Conclusions

Thank you!

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme
[FP7/2007-2013] under the I-CORES project, grant agreement no

224759.

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 28 / 29

Appendix Radix Sort execution time

0 20000 40000 60000

Number of Items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
ec

on
ds

Anastasios Papagiannis and Dimitrios S. Nikolopoulos, FORTH-ICS Scalable MapReduce on the SCC. MARC3 Symposium. 29 / 29

	Motivation
	Background
	Intel Single-Chip-Cloud
	MapReduce

	Design
	Outline
	Implementation

	Experimental Analysis
	Benchmarks
	Speedup
	Execution Time Breakdowns
	SCC vs. Cell BE

	Conclusions
	Appendix

